QClassifier_EN.ipynb 157.5 KB
Newer Older
Q
Quleaf 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Quantum Classifier\n",
    "\n",
    "<em> Copyright (c) 2021 Institute for Quantum Computing, Baidu Inc. All Rights Reserved. </em>"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Overview\n",
    "\n",
    "In this tutorial, we will discuss the workflow of Variational Quantum Classifiers (VQC) and how to use quantum neural networks (QNN) to accomplish a **binary classification** task. The main representatives of this approach include the [Quantum Circuit Learning (QCL)](https://arxiv.org/abs/1803.00745) [1] by Mitarai et al. (2018), Farhi & Neven (2018) [2] and [Circuit-Centric Quantum Classifiers](https://arxiv.org/abs/1804.00633) [3] by Schuld et al. (2018). Here, we mainly talk about classification in the language of supervised learning. Unlike classical methods, quantum classifiers require pre-processing to encode classical data into quantum data, and then train the parameters in the quantum neural network. Using different encoding methods, we can benchmark the optimal classification performance through test data. Finally, we demonstrate how to use built-in quantum datasets to accomplish quantum classification.\n",
    "\n",
    "### Background\n",
    "\n",
    "In the language of supervised learning, we need to enter a data set composed of $N$ pairs of labeled data points $D = \\{(x^k,y^k)\\}_{k=1}^{N}$ , Where $x^k\\in \\mathbb{R}^{m}$ is the data point, and $y^k \\in\\{0,1\\}$ is the label associated with the data point $x^k$. **The classification process is essentially a decision-making process, which determines the label attribution of a given data point**. For the quantum classifier framework, the realization of the classifier $\\mathcal{F}$ is a combination of a quantum neural network (or parameterized quantum circuit) with parameters $\\theta$, measurement, and data processing. An excellent classifier $\\mathcal{F}_\\theta$ should correctly map the data points in each data set to the corresponding labels as accurate as possible $\\mathcal{F}_\\theta(x^k ) \\rightarrow y^k$. Therefore, we use the cumulative distance between the predicted label $\\tilde{y}^{k} = \\mathcal{F}_\\theta(x^k)$ and the actual label $y^k$ as the loss function $\\mathcal {L}(\\theta)$ to be optimized. For binary classification tasks, we can choose the following loss function,\n",
    "\n",
    "$$\n",
    "\\mathcal{L}(\\theta) = \\sum_{k=1}^N 1/N \\cdot |\\tilde{y}^{k}-y^k|^2. \\tag{1}\n",
    "$$\n",
    "\n",
    "### Pipeline\n",
    "\n",
    "Here we give the whole pipeline to implement a quantum classifier under the framework of quantum circuit learning (QCL).\n",
    "\n",
    "1. Encode the classical data $x^k$ to quantum data $\\lvert \\psi_{\\rm in}\\rangle^k$. In this tutorial, we use Angle Encoding, see [encoding methods](./DataEncoding_EN.ipynb) for details. Readers can also try other encoding methods, e.g., Amplitude Encoding, and see the performance.\n",
    "2. Construct the parameterized quantum circuit (PQC), corresponds to the unitary gate $U(\\theta)$.\n",
    "3. Apply the parameterized circuit $U(\\theta)$ with the parameter $\\theta$ on input states $\\lvert \\psi_{\\rm in} \\rangle^k$, thereby obtaining the output state $\\lvert \\psi_{\\rm out} \\rangle^k = U(\\theta)\\lvert \\psi_{\\rm in} \\rangle^k$.\n",
    "4. Measure the quantum state $\\lvert \\psi_{\\rm out}\\rangle^k$ processed by the quantum neural network to get the estimated label $\\tilde{y}^{k}$.\n",
    "5. Repeat steps 3-4 until all data points in the data set have been processed. Then calculate the loss function $\\mathcal{L}(\\theta)$.\n",
    "6. Continuously adjust the parameter $\\theta$ through optimization methods such as gradient descent to minimize the loss function. Record the optimal parameters after optimization $\\theta^* $, and then we obtain the optimal classifier $\\mathcal{F}_{\\theta^*}$.\n",
    "\n",
    "<img src=\"./figures/qclassifier-fig-pipeline.png\" width=\"700px\" /> \n",
    "<center> Figure 1: Flow chart of quantum classifier training </center>"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Paddle Quantum Implementation\n",
    "\n",
    "Here, we first import the required packages:"
   ]
  },
  {
   "cell_type": "code",
Q
Quleaf 已提交
54
   "execution_count": 13,
Q
Quleaf 已提交
55 56 57 58 59 60 61 62 63 64
   "metadata": {},
   "outputs": [],
   "source": [
    "# Import numpy,paddle and paddle_quantum\n",
    "import numpy as np\n",
    "import paddle\n",
    "import paddle_quantum\n",
    "\n",
    "# To construct quantum circuit\n",
    "from paddle_quantum.ansatz import Circuit\n",
Q
Quleaf 已提交
65
    "from paddle_quantum.state import zero_state\n",
Q
Quleaf 已提交
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
    "\n",
    "# Some functions\n",
    "from numpy import pi as PI\n",
    "from paddle import matmul, transpose, reshape  # paddle matrix multiplication and transpose\n",
    "from paddle_quantum.qinfo import pauli_str_to_matrix # N qubits Pauli matrix\n",
    "from paddle_quantum.linalg import dagger  # complex conjugate\n",
    "\n",
    "# Plot figures, calculate the run time\n",
    "from matplotlib import pyplot as plt\n",
    "import time"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Parameters used for classification"
   ]
  },
  {
   "cell_type": "code",
Q
Quleaf 已提交
87
   "execution_count": 14,
Q
Quleaf 已提交
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
   "metadata": {},
   "outputs": [],
   "source": [
    "# Parameters for generating the data set\n",
    "Ntrain = 200        # Specify the training set size\n",
    "Ntest = 100         # Specify the test set size\n",
    "boundary_gap = 0.5  # Set the width of the decision boundary\n",
    "seed_data = 2       # Fixed random seed required to generate the data set\n",
    "# Parameters for training\n",
    "N = 4               # Number of qubits required\n",
    "DEPTH = 1           # Circuit depth\n",
    "BATCH = 20          # Batch size during training\n",
    "EPOCH = int(200 * BATCH / Ntrain)\n",
    "                    # Number of training epochs, the total iteration number \"EPOCH * (Ntrain / BATCH)\" is chosen to be about 200\n",
    "LR = 0.01           # Set the learning rate\n",
    "seed_paras = 19     # Set random seed to initialize various parameters"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Data set generation\n",
    "\n",
    "One of the key parts in supervised learning is what data set to use? In this tutorial, we follow the exact approach introduced in QCL paper to generate a simple binary data set $\\{(x^{k}, y^{k})\\}$ with circular decision boundary, where the data point $x^{k}\\in \\mathbb{R}^{2}$, and the label $y^{k} \\in \\{0,1\\}$. The figure below provides us a concrete example.\n",
    "\n",
    "<img src=\"./figures/qclassifier-fig-data.png\" width=\"400px\" /> \n",
    "<center> Figure 2: Generated data set and the corresponding decision boundary </center>\n",
    "\n",
    "For the generation method and visualization, please see the following code:"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Generate a binary classification data set"
   ]
  },
  {
   "cell_type": "code",
Q
Quleaf 已提交
129
   "execution_count": 15,
Q
Quleaf 已提交
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
   "metadata": {
    "ExecuteTime": {
     "end_time": "2021-03-09T04:03:35.707224Z",
     "start_time": "2021-03-09T04:03:35.691351Z"
    }
   },
   "outputs": [],
   "source": [
    "# Generate a binary classification data set with circular decision boundary\n",
    "def circle_data_point_generator(Ntrain, Ntest, boundary_gap, seed_data):\n",
    "    \"\"\"\n",
    "    :param Ntrain: number of training samples\n",
    "    :param Ntest: number of test samples\n",
    "    :param boundary_gap: value in (0, 0.5), means the gap between two labels\n",
    "    :param seed_data: random seed\n",
    "    :return: 'Ntrain' samples for training and\n",
    "             'Ntest' samples for testing\n",
    "    \"\"\"\n",
    "    # Generate \"Ntrain + Ntest\" pairs of data, x for 2-dim data points, y for labels.\n",
    "    # The first \"Ntrain\" pairs are used as training set, the last \"Ntest\" pairs are used as testing set\n",
    "    train_x, train_y = [], []\n",
    "    num_samples, seed_para = 0, 0\n",
    "    while num_samples < Ntrain + Ntest:\n",
    "        np.random.seed((seed_data + 10) * 1000 + seed_para + num_samples)\n",
    "        data_point = np.random.rand(2) * 2 - 1  # 2-dim vector in range [-1, 1]\n",
    "\n",
    "        # If the modulus of the data point is less than (0.7 - gap), mark it as 0\n",
    "        if np.linalg.norm(data_point) < 0.7-boundary_gap / 2:\n",
    "            train_x.append(data_point)\n",
    "            train_y.append(0.)\n",
    "            num_samples += 1\n",
    "\n",
    "        # If the modulus of the data point is greater than (0.7 + gap), mark it as 1\n",
    "        elif np.linalg.norm(data_point) > 0.7 + boundary_gap / 2:\n",
    "            train_x.append(data_point)\n",
    "            train_y.append(1.)\n",
    "            num_samples += 1\n",
    "        else:\n",
    "            seed_para += 1\n",
    "\n",
    "    train_x = np.array(train_x).astype(\"float64\")\n",
    "    train_y = np.array([train_y]).astype(\"float64\").T\n",
    "\n",
    "    print(\"The dimensions of the training set x {} and y {}\".format(np.shape(train_x[0:Ntrain]), np.shape(train_y[0:Ntrain])))\n",
    "    print(\"The dimensions of the test set x {} and y {}\".format(np.shape(train_x[Ntrain:]), np.shape(train_y[Ntrain:])), \"\\n\")\n",
    "\n",
    "    return train_x[0:Ntrain], train_y[0:Ntrain], train_x[Ntrain:], train_y[Ntrain:]"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Visualize the generated data set"
   ]
  },
  {
   "cell_type": "code",
Q
Quleaf 已提交
188
   "execution_count": 16,
Q
Quleaf 已提交
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
   "metadata": {},
   "outputs": [],
   "source": [
    "def data_point_plot(data, label):\n",
    "    \"\"\"\n",
    "    :param data: shape [M, 2], means M 2-D data points\n",
    "    :param label: value 0 or 1\n",
    "    :return: plot these data points\n",
    "    \"\"\"\n",
    "    dim_samples, dim_useless = np.shape(data)\n",
    "    plt.figure(1)\n",
    "    for i in range(dim_samples):\n",
    "        if label[i] == 0:\n",
    "            plt.plot(data[i][0], data[i][1], color=\"r\", marker=\"o\")\n",
    "        elif label[i] == 1:\n",
    "            plt.plot(data[i][0], data[i][1], color=\"b\", marker=\"o\")\n",
    "    plt.show()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "In this tutorial, we use a training set with 200 elements, a testing set with 100 elements. The boundary gap is 0.5."
   ]
  },
  {
   "cell_type": "code",
Q
Quleaf 已提交
217
   "execution_count": 17,
Q
Quleaf 已提交
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
   "metadata": {
    "ExecuteTime": {
     "end_time": "2021-03-09T04:03:37.244233Z",
     "start_time": "2021-03-09T04:03:35.719425Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The dimensions of the training set x (200, 2) and y (200, 1)\n",
      "The dimensions of the test set x (100, 2) and y (100, 1) \n",
      "\n",
      "Visualization of 200 data points in the training set: \n"
     ]
    },
    {
     "data": {
Q
Quleaf 已提交
237
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAD4CAYAAADhNOGaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAApn0lEQVR4nO2df6xexXnnP4+vYydu1Ma89mYdwNeQZZuQ3QrCVZSkUpqkJCHuClOVtiSG3qRUXm6b7kpRqxhZ6kZsrdL+Q6gSRCxKcLlXCQlVFLclYoGEXWk3kFx2AfNDxsYJYErCxQ6RIigJZvaPc974+PX5/XPOe74fafSeM+fX886ZM8/MPM/MmHMOIYQQw2VV1wIIIYToFikCIYQYOFIEQggxcKQIhBBi4EgRCCHEwFndtQBl2LBhg9uyZUvXYgghRK944IEHXnDObZyM76Ui2LJlC8vLy12LIYQQvcLMnoqLV9eQEEIMHCkCIYQYOFIEQggxcKQIhBBi4EgRCCHEwKlFEZjZzWb2vJk9knDczOxvzeyQmT1sZu+MHJs3s4NhmK9DHiHKsLQEW7bAqlXB79JS1xL5ic/p5JNsPsmSiXOucgDeB7wTeCTh+Fbgm4AB7wbuD+NPAw6Hv+vD7fVZz7vgggtcn1lcdG521jmz4HdxsWuJxOKic+vWOQcnwrp1ejeTNJVOdXwTPr1Dn2SJAiy7uDI6LrJMALakKIIvAh+L7B8ANgEfA76YdF5S6LMiiMsgZs4tLHQtWbP4rvxmZ09+J+MwO9u1ZH7RRDrVVWj69A59kiVKkiJoy0ZwOvBMZP9IGJcUfwpmtsPMls1seWVlpTFBm2bXLnjppZPjnIMbb6y/6ehL03RpCXbsgKeeCv7rU08F+z41lZ9+ulj8UHkqdjhStXSK+yZeeimIL4JP79AnWfLQG2Oxc26Pc27OOTe3ceMpI6R7Q9KH5FzxjJ+GT4VvXR96k2zeXCy+SXxR4JMsLYFZ/LEy6TT+n3UpF5/eoU+y5KEtRfAscGZk/4wwLil+akn6kKDe2oJPhW8fake7d8O6dSfHrVsXxLeJTwp8kl27ApkmMSueTtH/mUTRQrPKO6yifOOu9SU/5Sauv6hMIN1G8FucbCz+rjthLP4+gaF4fbh9Wtaz6rARdNVnHddvGNd/WFU+s/hnmNX4Z3Lia3/pJD7YMZpMq6byFBSXJel/VjWsLi46NxqduM9olH2fKjaKtGt9yE+T0KSxGPgy8Bzwc4J+/iuBq4CrwuMGfAF4EtgPzEWu/UPgUBg+med5VRVBlxb9tMw/fn4d8vlU+PrqQeEjTSlw3/JUmlKpUmiW+Z9V/pdP31keGlUEbYeqiiDp5c3MNK+9o7WVaPilX8qWr0jm6qrwTaoF+Vg78pGmChbf8pRP/zOP8k3Kv1Wu7QIpgghptZGmC83FRefWrDn5WWvWnPysumqFbWdA1fyr01Qa+panfPqfWcojTdYq13aBFEGErP7Jppt3WR9T35qbY/oqt280ocB9fDe+/M+swjrtnlWu7QIpgghxL6+O2lJd+FaLyItPBmpxMnXnKR+6O+JkKPs/0/5PVr6ucm3bSBFMsLgY2AS6aBHkla/rD60ovtV+xMn43q1Tlwx1fzvTZEyWIoghy1bQh8LXJ3woIETz+FC4tSlDU+6lXSBFEEOarWA0quURXtFGK6OPLRlRDB+6O9qWoUq+9umbkCKIIc6DB5x73eumrwDzrWYi+svQWgRJ+FTA5yVJEfRmrqEm2L4dbr4ZRqMTcaMRfOlLwbFpwqcpJ0S/8WH6hK5l8HkqkDJYoCT6xdzcnFteXu5ajF6xalWQYScxg9dea18e0W+WloJKxNNPB3MC7d7dfuWpSxmSJsubnYUf/KAdGcpgZg845+ZOiZciGAZ9zbhC+EhfK1ZJimDQXUNp+DoVcFm6bkoLMU1UmWbax7JFiiCGNvr/imSGOjLO9u2wZ0/QAjALfvfsmT5biBBtULZi5a1tIc6C7HtoeqnKpj0SinjwyNtHiPop4/Ezec3CQvF7dO3thNxH89O0j3KRzNB1xhFi2shTuYor9OuokHU9BiNJEchYHEPThtUihqa+GqWE8JWs73vcfRN1tzaL/w6LlgldO200aiw2s4vM7ICZHTKznTHHrzOzB8PwhJm9GDl2PHJsXx3yVKVpw2oRQ1NZo5SPBikhmqJIfs9aOjVuzE1SfbnocqveOm3ENROKBGCGYOWxs4E1wEPAuSnn/ylwc2T/p0Wf2XTXkHPNjhps2kYgu4IYEkXze1Z3a571Sqp00XY5IpmmbATAe4A7I/tXA1ennP9/gA9F9r1UBE1TJDMUzTiyK4ghUTS/l11DYFJB9LFy1aQiuBS4KbJ/BfD5hHNnCdY2nonEvQosA/cBl+R55jQogibp2iAlRJuUye9plaskRTH2EoITU9j3ZY6hMUmKoO1xBJcBtzvnjkfiZl1gvPg48Dkze2vchWa2w8yWzWx5ZWWlDVl7S5XBLkL0jTL5ffv2wDj72mvBb3Q8TdKYmxtuONHHfzwswbwZB1CROhTBs8CZkf0zwrg4LgO+HI1wzj0b/h4G7gXOj7vQObfHOTfnnJvbuHFjVZmngiQDmbcGKSEaoIn8nqQoyk7e2PYA0sLENROKBGA1cBg4ixPG4nfEnPc24AeE8xuFceuBteH2BuAgKYbmcVDXUHY/Zx+nyBWiLHXk9zz3KNsN5csAUpocUAZsBZ4g8B7aFcZdA1wcOeezwLUT170X2B8qj/3AlXmeJ0UQLJwjg7AQyRR1yMhTAJdxxPBpAGmjiqDtMHRFsLgYn1lkEBYioG6X0rL3dS5/K6KN7zpJEWjSuRR8HZSV1h8pg7AQxfvy0waZRcuBXbtgfr7Y5I15jNnj0cxF71EbcdrB99DWgDJfB2WlDXjxQT4huqZoX35Si2A0ql4OxJUla9YE9x53WyV19bZlI1CLIAGfl3ZMqh2MRppWWggo7lKa5HkE1cuBSXfU0Sgo4o8eDX6feirYTqKN6eKlCBLImo+kS5Iy7fXXdyOPEL5R1KU0aezAsWPx5xctB6LuqG98I/z85/mum51tp3InRZBAWo2ia9uBFpkRIp0y30jc2IEmBmfmVSKtjv2J6y/yPXRpI6hrXnIhhP80YStMs0fEubvWOSYI2QiKkVSjuOMOf20HQoh6aaL1nda1G22RAGzYAJdf3vzSllIEMYy7fq64Iti/9dYTTUWfbQdCiPpJm5eoTDdxknKBE/fasAE++cl4I3ITFU8pggmyFpfWhG5CCKi2EP2kcoGT73X0aLpBue6K5yAVQZoWz3IbrWuCq64NzkKIatTpYh53rzRqr3jGGQ58D1WMxVnGnzwDUaoab3werCaEyEed634UWRWtSlmBFq8PyFo8uo3FpbtewFoIUZ06v+Oke00yGgVG5bLG6kYXr+8TWcbeNubyl8FZiP5TZ1kRd681a4KCf2xQXlyEF15oZrzQ4BRBlrG3jcFaMjgL0X/qLCvi7nXzzUHBH+etVDtx/UW+hyZtBHWSZEuQjUCIYeDbAlFoPYITtPFytIKYEMPGxwpfo4oAuAg4ABwCdsYc/wSwAjwYhj+KHJsnWKLyIDCf53l9WJim6ZWGhBB+U6QMaKtimKQIVlftWjKzGeALwIeAI8D3zGyfc+6xiVNvc859auLa04D/BswBDnggvPbHVeXqGhmEhRg2ecuA8cC08TiC8cA0aG8iyTqMxe8CDjnnDjvnfgZ8BdiW89qPAHc5546Fhf9dBK2L3iODsBDDJm8ZkDUwrY3Bp3UogtOBZyL7R8K4SX7HzB42s9vN7MyC12JmO8xs2cyWV1ZWahC7WdpwQxVC+EveMiBrmcyy01gUoS330X8Etjjnfo2g1r+36A2cc3ucc3POubmNGzfWLmDdaM0AIYbN9u3B+sYzM8H+zEywP1kGpLUc2lopsQ5F8CxwZmT/jDDuFzjnjjrnXgl3bwIuyHttn0mbtVAIMd0sLcHevXD8eLB//HiwP1mbT2s5tGVrrEMRfA84x8zOMrM1wGXAvugJZrYpsnsx8Hi4fSfwYTNbb2brgQ+HcUII0Wvy1ubTeg/asjVW9hpyzr1qZp8iKMBngJudc4+a2TUErkr7gP9iZhcDrwLHCNxJcc4dM7P/TqBMAK5xziWsEiqEEP0hae6guPjt2+N7DHbvPtmjCJqxNQ5u0jkhhGiD1atPdAtFmZmBV1/Nf5+lpaAV8fTTQUtg9+76J52r3CIQQghxKnFKIC0+iaTWQp0MbtI5IYRog9nZYvFdIkUghBAN0KexRFIEYrqpa1im1hYVBenTWCIpghj0zU8JdQ3LbGt4p5g6+jKWSF5DE0xOAAVBc85XTS5SqGstQa0tKqYELVWZk7aGdIsWKDIsM60ZqKlkxZQjRTCBvnkPKdtXl3dYZlbXj6aSFVOOFMEE+uY9o0r/fF63jaxmYJ/cP4QogRTBBPrmPaNKX11et42sZmDd7h/yRhAZtJ5F4pYt8z00vVSl1hP2CLP49f7M6ntGm+uK+riQrfCKJrMICUtVqkUQQ19cvgZBHX11WdWrss3AMtU2eSOIDDrJInHawffQh8XrRU1UrR7lvT6pGZgWX0auNlo4otc0mUVIaBF0XqiXCVIEA6NKX12Vbp+0wr7sfdvshhK9pMkskqQI1DUk/CGpq6VKX10Vf+C0NnrZ+8obQWTQRRaRIhB+0NQ0DlVsDGmFfdn79mkCGtEJnWSRuGZC0QBcBBwADgE7Y45/GngMeBi4B5iNHDsOPBiGfXmep66hKaSp9nAVG0OaTPL+ET2EprqGzGwG+ALwUeBc4GNmdu7Eaf8PmHPO/RpwO/A3kWMvO+fOC8PFVeURPaWpId1VqldpbfS0+9bhBK6xBqJN4rRDkQC8B7gzsn81cHXK+ecD/zuy/9Oiz1SLYArxwYgaZ5Quaqiuo6Wg1oZoCBo0Fp8OPBPZPxLGJXEl8M3I/uvNbNnM7jOzS5IuMrMd4XnLKysrlQQWHtK1ETXJRgHFDNV1OIHX6UiuloXIQ5x2KBKAS4GbIvtXAJ9POPdy4D5gbSTu9PD3bOAHwFuznqkWwZTS9pDu6PNmZuppkdThBJ50DygmS56WhYbRDwqaGkdAzq4h4ELgceDfpNzrFuDSrGdKEQyQMgVWWlfPuHBOKnDLjuKpo4sr6R5m9Y6hUBfU4GhSEawGDgNnAWuAh4B3TJxzPvAkcM5E/Ppx6wDYABwEzs16phRBDylb81xcdG40OrUwyyqw4gq5NWuce93rsgv/pAI8z3+oy0aQpKSKKJSs1okPdhnRKo0pguDebAWeCAv7XWHcNcDF4fbdwI+YcBMF3gvsD5XHfuDKPM+TIugZZQvHuOvyFlhJhVyREJWxyH+oo7uljhZKVkGv6S4GR6OKoO0gRdAz6p6OIU+BlafbJy2sWnVyAd527TnP87IUzsJC/D0WFrr5T6JzkhSBRhaL5ik7RiBuneAoaaN4q64k9NprJ++3vXRdkhfV1q2B948ZXHFF+kjsO+6Iv/c4vmtPLeENUgSiecpOxzAzk3wsq8DavTsoLKsQdddse+m6uAFr8/Owd+8JBencyddMupi2veCO6C9xzQTfg7qGekZZG0Fa102efvesbqXZ2eTuk8muJx88bPLYPaIyq+tHTIC6hkRnlK15zs4mx+eptaZdPx4gdsMNMBrFnxet7ftQe87TDRWVWV0/Ii9x2sH3oBbBQGhzUZqua/t5yGoRFFlwRwwS5DUkeknVgizv9X0oMOMU1tg7qk2Z+5BWIhYpAjFdDLUw6vp/96X1JGJJUgQWHOsXc3Nzbnl5uWsxRFeMJ4iLTsy2bp08XppmaSnwXDp+/NRjs7OBzUV4jZk94Jybm4yXsVj0jzpn5xT5GCvfOCUAzY2nEK0gRSC6p+hUyW0P7ppm8qZ9nPKN4pymue4xUgSiW8qsVdz24C6fqbLeQJG0z6Nk61pnWrRPnOHA9yBj8RRRZtBTnwyWTRp3s9Ih69lF0r7IJH4asOYtyGtIeEnZGTC79p7JQ9MKK60gz/PsImmfNRNskXcnOiNJEchrSHTLli3xk8tNgxdK0/9t1apT5xuCYOTz5s3Zzy4q39JSYCt4+ung/j/9KRw9mv960TnyGhJ+Ms3TIDRt1E6zleR5dtG037795PWbr79+et/dwJAiEN3S5Rw+TS/s3rRRO60gz/PsImkfl1Y+zL8k6iGuv6hoAC4CDgCHgJ0xx9cCt4XH7we2RI5dHcYfAD6S53l12Aj60MUsGqSNhd3bMGonyVjns/tknBep0OCaxTMES1SezYk1i8+dOOePgRvD7cuA28Ltc8Pz1xKsefwkMJP1zKqKQPlatLawe5c1jjqevbjo3MxMelqJ3pCkCCobi83sPcBnnXMfCfevDlsafxU5587wnO+Y2Wrgh8BGYGf03Oh5ac+saiyeZvukyEmaofW115RJIH4qjyjjtBK9oUlj8enAM5H9I2Fc7DnOuVeBnwCjnNcCYGY7zGzZzJZXVlYqCayBqSKzD71KJmna9tAWWaOJhziAb0rpjbHYObfHOTfnnJvbuHFjpXtpYKrI9Jgpm0nKjJT2lTSlJ++gqaIORfAscGZk/4wwLvacsGvoV4CjOa+tnWn2WPQW32rJWR4vZTPJNE2Il6T0ZmaCtAK/3qkoT5zhoEgAVgOHCYy9Y2PxOybO+RNONhZ/Ndx+Bycbiw/TgrHYOXkNtUoZw6sPL2hh4YShdGYm2M+i7EhpH0l7b/K46CU0OcUEsBV4gsDrZ1cYdw1wcbj9euBrBG6i3wXOjly7K7zuAPDRPM/TFBOeklR4F51PyIdCpqwM07ZgfNF3OjOj2pXHNKoI2g5SBB6SVnAWrSX7UJiWlcEXJdZ0ayrpnaqF4DVJikBzDYl6SHO3hGKumFmunW1QRYbJOXl2725vtG1bq7clve9JhuRu2wM015BoljR3y6KGVx/curJkSDN+T87J0+aUC0nG6ssvr9egG/dO45BPdj+Iayb4HtQ15CF5Rurm7a7wpXuliKEUnBuNuu8KyeqyqTMdo+9Uo497AbIRiEapu/D2wWuoqKHUh37xPAvINFE4+6C8RSZSBKJ5fCi82yCr1t1lLTjvAjJNPXsI77/HJCkC2QhEfXTZN94mWbaKLvvFowPlkpiZSb9H0cF/4/OvuCLYv/XW6X7/U4gUgRBFyTKUdj1XyVghJ3H8ePKxolNkTNOUGh7R9kB8KQIhspj8KiGodY9Gp57b5lwlWaVFUqsgrbVQdIqMaZpSwxM60a1x/UW+B9kIRCPE9XFnGUG76hfPu7BOUQNu2uC/uP86TVNqeEKT4ynRgDIhUkgaiPWGN/i5QHve9RKKDm5Luu9oBC+/3J/06TFNjqfUgDIxDMp2riZ1ccQVctD9QKm86yUUNeAnDf6D+PSJHo+er6l8S9PFeEopAjE9VOlcLVqwd20Qbqq0SJqe+9ix+POPHdMC9jXTyTT5cf1FvgfZCEQsVTpXk64djaoNlCpjQ8hzTdsDuHyYCHDKib720SgIdZue0IAyMfVUMVxmTSlRxiBcprBeWDj1fyRd06ahWiOHG6Wt5JUiENNP1Vpr3QVrmXUYkpSZDzVvjRxujLYaXEmKQF5Dwn/yer60NQVzXoq6f6RN7dzmFNyiddqaeb0RryEzO83M7jKzg+Hv+phzzjOz75jZo2b2sJn9fuTYLWb2fTN7MAznVZFHTCFFDMBZ6xC3TVGDbprBumvjtGiUrmder+o1tBO4xzl3DnBPuD/JS8AfOOfeAVwEfM7M3hQ5/ufOufPC8GBFecS0UXTkqk/zHdW1DoOZ3DGnnE48hSJUVQTbgL3h9l7gkskTnHNPOOcOhtv/AjwPbKz4XNF38vr75/WX94Xo/9q1C+bn87dQ4koDM7jqqmA7Kb3anphG1E7njdk4w0HeALwY2bbofsL57wIeB1aF+7cQLFr/MHAdsDbl2h3AMrC8efPmei0ool2KuEj0yW2xDtePotNcyJtnKmjLDk9ZryHgbuCRmLBtsuAHfpxyn01hof/uiTgD1hK0KP4iSx4nr6H+U6Rw71NB15TSSrtvnxSliKXN6axKK4K0EBbsm1ykoE8475eB/wtcmnKv9wP/lOe5UgQ9p6i/f1/cFpuagC3tvpr0rfek6fK660FJiqCqjWAfMB9uzwPfmDzBzNYAXwf+3jl3+8SxTeGvEdgXHqkoj+gDRVwkik6a1iVNuX6k3bdrdxNRmTQzWFuzfFdVBNcCHzKzg8CF4T5mNmdmN4Xn/B7wPuATMW6iS2a2H9gPbAD+sqI8og/kdZGoY2L2Ng2pTbl+pN23SFrKoOwlabq8NV+JuGaC70FdQ1NAnu6eOkYKt21faKobK+2+Wc/sk51lgKS9nrpNQGhksegdScMtITk+St45+6cdpYP3JPWA1j1YXusRxKDWsuekDbCqMrW0r2MQmkLp4D1J4yDH4wuiq6K+4Q31P3+wikBrbveA3buDQn8S5/JZy2RIDVA69J6XXz6xffRo/WXVYBWB1tzuAdu3J3cB5anNdj1uvwnKNGOnMR0GRBtl1WAVgVrLPWF2Nj4+T22283H7NVO2GTtt6TAw2iirBmsslv2sJ/g2tXSXKNMOkjpfu4zFE6i13BNUmz2BmrGDpI2yarCKQOVLj/BpaukukdF3kLRRVg1WEUBy+SK3UuElasZOHXnLmqbrQqvrvV3/meySHtvjYLgVUeEJ4wzYl7mXRCo+lTWDNRYnIXucEKINuihrZCzOiexxQog28KmskSKYQPY4IUQb+FTWSBFMIHucEKINfCprpAgmkFupEKINfCpr5DUUw/btKviFEM3g46J7lVoEZnaamd1lZgfD3/UJ5x2PrE62LxJ/lpndb2aHzOy2cFlLIYToBUXHHPk663HVrqGdwD3OuXOAe8L9OF52zp0Xhosj8X8NXOec+3fAj4ErK8ojhBCtUKZQ93XW46qKYBuwN9zeS7AAfS7CBes/CIwXtC90vRBCdEmZQj3LZbSrWQ2qKoI3O+eeC7d/CLw54bzXm9mymd1nZpeEcSPgRefcq+H+EeD0pAeZ2Y7wHssrKysVxRZCiGqUGQeQ5jLaZbdRpiIws7vN7JGYsC16XrgwctIw5dlwNNvHgc+Z2VuLCuqc2+Ocm3POzW3cuLHo5UIIUStlxgGkuYx22W2UqQiccxc65/5DTPgG8CMz2wQQ/j6fcI9nw9/DwL3A+cBR4E1mNvZcOgN4tvI/EkKIFigzDiDNZbTLkcZVu4b2AfPh9jzwjckTzGy9ma0NtzcAvw48FrYgvg1cmna9EEL4SN5xAJP9/hA/k2iXI42rKoJrgQ+Z2UHgwnAfM5szs5vCc94OLJvZQwQF/7XOucfCY58BPm1mhwhsBn9XUR4hhGiEOENu1vTQRfr9Ox1p7JzrXbjgggtcURYXnZuddc4s+F1cLHyLXPep6zlCiO4Zf88QfNNBcR6Edeuyv+/xtZNhdjb9eU2VH8CyiylTOy/Uy4SiimBxMXhp0Rdh5tzCQqHbxN4nmhmyjgsh+kPc95y3QB8zqTyi5U8XJCmCQaxHkDTvtxncemv+4d1Z84drLQMhpoek7zmKWdAtVPQeXZUJg16PIMnq7lwx16wsq75P84sLIaqR57vNMuQm9ftv3erXcriDUARpL6tIIZ1l1fdpfnEhRDWyvts8htw4z6L5edi716/5hgahCHbvDl5CHEUK6Syrvk/ziwshqhH3PY/LkSJTRk96Ft1xh4fzDcUZDnwPZbyGFhbSrf4LC87NzATxMzPJhmR5DQkxHJr4nrs0IDNkr6ExSS91YSH+xRT1KqoDKRIhpoOkb7moS2mdJCmCQXgNZbF6NRw/fmr8zAy8+uqp8U0xHnwSbTauW6cV0oToG2nfMnT3nQ/aayiLOCWQFt8Uvs5VLoTIJjryeH4++Vv2aYnKMWoR4E+LYNWqoJE4SZavshCiW+JaAHF0/S2rRZDCjh3F4ptC7qdC9JO41nwcvn7LUgTADTfAwkLQAoDgd2EhiB/TxspBcj8VohpdrfCVZzxS2rfcldy/IM6C7Hso6zVUljxzDNXl6SOvISHK0eVcX0meQFGPoCQ52pQbeQ2VJ22+kN275ekjhA90Oa/P0hJcfnn8MZ/mI0qyEUgR5CDNiLt5c/xLHI3ghReal00IEZD0nULwPR47Fnyvu3c3U0nbsAGOHj01PqtAb9NJpBFjsZmdZmZ3mdnB8Hd9zDkfMLMHI+FfxwvYm9ktZvb9yLHzqsjTFGlG3KS+waNHu59ISoghkWaIPXq0+Xl9rr++nI3PByeRqsbincA9zrlzgHvC/ZNwzn3bOXeec+484IPAS8D/iJzy5+PjzrkHK8rTCGlG3LSXJf9/Idoj7juNo6mxOWXHB3jhJBJnOMgbgAPApnB7E3Ag4/wdwFJk/xbg0qLPbdtY7FyyEXdxMdlAFDd3SPQ+o1EQZBgWoh7SvkcfFoZJoi0nEZqYawh4MbJt0f2E878F/KfI/i2hMnkYuA5Ym+e5XSiCNEajZE+BKFkrHjXp4SBvJDEUsjx4xhNLDvEbKK0IgLuBR2LCtsmCH/hxyn02ASvA6ybiDFgL7AX+IuX6HcAysLx58+YWkiw/ed2/8mTQJiae0hKaYkjkWWJyqN9AUy2C3F1DwH8F9qQcfz/wT3me61uLwLl8Ne6k6WebbrJ2OduhEF0w2QW7apW+AeeSFUFVY/E+YD7cnge+kXLux4AvRyPMbFP4a8AlBC2NXjK5+EScgSiPF0ATngJaQlP0gTpH10a/xxdeSHYr1TcQUFURXAt8yMwOAheG+5jZnJndND7JzLYAZwL/c+L6JTPbD+wHNgB/WVEer8nyamjKU8AH9zQh0hhP2tbU8o36BjKIayb4HnzsGspLF15DshEI36mj+zKte9b3b6DXXkNdhT4rgq6Q15DwmarLN+Yp6BcXT/bwG438+A4011BJ2p5iQgjRLFXn28lzva8rAJadmqIMWo9ACOEtVUfX5nGI8HEFwKWleCUA7RqypQiEEJ1TdfnGNGPw2BsprsUA3XoOpSmhPs01JGqi84UphKiJsnk5jwt2Ekktiq1bT3gjJdGl51CaEmpzriEpAg9o2nWuTaTQppO877WrvJzUorjjjvQlJLteATBJCY1GLdst4izIvodp8xqalpG/vrvoiXIUea++5eW00fw+eM+1/c0g91F/qeo65wu+FQKiHoq8V1/y8thduok5vep2xW7TtTtJEahrqEPGzW2X4MHbt1GPmspiOinyXn0YwRvtnoqjSndQE11fVWwjdSFF0BFNZtbJ57TVZ+9DISDqp8h77XqRlaUlmJ9PtgsU9UaaxEcX1FqIayb4Hqahayir2VpH87Dt/kfZCKaTou81b1dHE10sadNP19E95UvXV1mQjcAv2shQXfTZayqL6aSNQrtqpSFrvY868n3f7WBSBJ7RRobqe+1F1I8virqJ/J/mIVRXy7Tvrd4kRSAbQUe00ZeqPnu/aXvMhU/jVZpwLEjK1zMz9c0nVHUEtLfEaQffwzS0CJxrvnbW99rLNNPFu6lSC687rzbRIlB+zwZ1DU03SR9qnR9wW90KvnRfNEkXfc1luwqbKGCbKrSHkHeq0IgiAH4XeBR4DZhLOe8igvWNDwE7I/FnAfeH8bcBa/I8V4rgZNqoCaU9o25lM4RaXRf2m7LKpymlpUK7fZpSBG8HfhW4N0kRADPAk8DZwBrgIeDc8NhXgcvC7RuBhTzPlSI4mTZql0nPGI3qLbj77pWRl648usq8KzkdTA9JiqCSsdg597hz7kDGae8CDjnnDjvnfgZ8BdgWLlj/QeD28Ly9BAvYi4K0MaI36V5Hj9Y7wGYoo5O7GHhV1tApp4Pppw2vodOBZyL7R8K4EfCic+7VifhYzGyHmS2b2fLKykpjwvaRNj7UovcqW3APpdDpyvukzHQGXY8WFs2TqQjM7G4zeyQmbGtDwDHOuT3OuTnn3NzGjRvbfLT3tPGhJj1jNIo/v2zBPaRCx4c5ZvIwtS6T4heszjrBOXdhxWc8C5wZ2T8jjDsKvMnMVoetgnG8KMj4g9y1K6iJb94cFJx1fqhJz4D4dWDLFtxt/BdRnO3b9Q6mmVoWrzeze4E/c86dsqK8ma0GngB+k6Cg/x7wcefco2b2NeAfnHNfMbMbgYedczdkPU+L1/vF0pIKbiH6QCOL15vZb5vZEeA9wD+b2Z1h/FvM7A6AsLb/KeBO4HHgq865R8NbfAb4tJkdIrAZ/F0VeUQ39KWLQwgRTy0tgrZRi0AIIYrTSItACCFE/5EiEEKIgSNFIIQQA0eKQAghBk4vjcVmtgIkrPabygbghZrFqQPJVRxfZZNcxfFVtmmUa9Y5d8qI3F4qgrKY2XKcxbxrJFdxfJVNchXHV9mGJJe6hoQQYuBIEQghxMAZmiLY07UACUiu4vgqm+Qqjq+yDUauQdkIhBBCnMrQWgRCCCEmkCIQQoiBM3WKwMx+18weNbPXzCzRxcrMLjKzA2Z2yMx2RuLPMrP7w/jbzGxNTXKdZmZ3mdnB8Hd9zDkfMLMHI+FfzeyS8NgtZvb9yLHz2pIrPO945Nn7IvGNpFde2czsPDP7TvjOHzaz348cqzXNkvJM5PjaMA0OhWmyJXLs6jD+gJl9pIocJeT6tJk9FqbPPWY2GzkW+15bkusTZrYSef4fRY7Nh+/9oJnN1ylXTtmui8j1hJm9GDnWSJqZ2c1m9ryZPZJw3Mzsb0OZHzazd0aOVUuvuIWM+xyAtwO/CtwLzCWcMwM8CZwNrAEeAs4Nj30VuCzcvhFYqEmuvwF2hts7gb/OOP804BiwLty/Bbi0gfTKJRfw04T4RtIrr2zAvwfOCbffAjwHvKnuNEvLM5Fz/hi4Mdy+DLgt3D43PH8tcFZ4n5kW5fpAJB8tjOVKe68tyfUJ4PMx154GHA5/14fb69uUbeL8PwVubiHN3ge8E3gk4fhW4JuAAe8G7q8rvaauReCce9w5dyDjtHcBh5xzh51zPwO+AmwzMwM+CNwenrcXuKQm0baF98t730uBbzrnXso4rypF5foFDadXLtmcc0845w6G2/8CPA80sZZpbJ5Jkfd24DfDNNoGfMU594pz7vvAofB+rcjlnPt2JB/dR7AaYNPkSa8kPgLc5Zw75pz7MXAXcFGHsn0M+HKNz4/FOfe/CCp/SWwD/t4F3EewwuMmakivqVMEOTkdeCayfySMGwEvumAxnWh8HbzZOfdcuP1D4M0Z51/GqZlvd9gkvM7M1rYs1+vNbNnM7ht3V9FsehWRDQAzexdBDe/JSHRdaZaUZ2LPCdPkJwRplOfaJuWKciVBrXJM3HttU67fCd/P7WY2XtK2yfQqdP+wG+0s4FuR6KbSLIskuSunV+aaxT5iZncD/zbm0C7n3DfalmdMmlzRHeecM7NEv91Qy/9HglXdxlxNUBiuIfAj/gxwTYtyzTrnnjWzs4Fvmdl+goKuEjWn2a3AvHPutTC6dJpNI2Z2OTAH/EYk+pT36px7Mv4OtfOPwJedc6+Y2X8maE19sKVn5+Uy4Hbn3PFIXJdp1gi9VATOuQsr3uJZ4MzI/hlh3FGC5tbqsEY3jq8sl5n9yMw2OeeeCwut51Nu9XvA151zP4/ce1wzfsXMvgT8WZtyOeeeDX8PW7BG9fnAP1AhveqSzcx+GfhngorAfZF7l06zGJLyTNw5RyxYq/tXCPJUnmublAszu5BAuf6Gc+6VcXzCe62jUMuUyzl3NLJ7E4FNaHzt+yeuvbcGmXLLFuEy4E+iEQ2mWRZJcldOr6F2DX0POMcCj5c1BC97nwssL98m6J8HmAfqamHsC++X576n9EmGBeG4X/4SINazoAm5zGz9uFvFzDYAvw481nB65ZVtDfB1gr7T2yeO1ZlmsXkmRd5LgW+FabQPuMwCr6KzgHOA71aQpZBcZnY+8EXgYufc85H42PfaolybIrsXE6xpDkFL+MOhfOuBD3Ny67hx2UL53kZgfP1OJK7JNMtiH/AHoffQu4GfhJWd6unVhPW7ywD8NkEf2SvAj4A7w/i3AHdEztsKPEGgyXdF4s8m+EgPAV8D1tYk1wi4BzgI3A2cFsbPATdFzttCoOFXTVz/LWA/QWG2CLyxLbmA94bPfij8vbLp9Cog2+XAz4EHI+G8JtIsLs8QdDVdHG6/PkyDQ2GanB25dld43QHgozXn+Sy57g6/hXH67Mt6ry3J9VfAo+Hzvw28LXLtH4bpeAj4ZJ1y5ZEt3P8scO3EdY2lGUHl77kwPx8hsOdcBVwVHjfgC6HM+4l4RVZNL00xIYQQA2eoXUNCCCFCpAiEEGLgSBEIIcTAkSIQQoiBI0UghBADR4pACCEGjhSBEEIMnP8PNRUZ2fYpuekAAAAASUVORK5CYII=",
Q
Quleaf 已提交
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
      "text/plain": [
       "<Figure size 432x288 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Visualization of 100 data points in the test set: \n"
     ]
    },
    {
     "data": {
Q
Quleaf 已提交
256
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAD4CAYAAADhNOGaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAAh60lEQVR4nO3de8wd9X3n8ffHpia1UBvbeAkB/Bi2pAltuiQ86yQbaZsLCYSVMNmSxKmTddJEXtKQlTbaFUZIm4hda2n3D9SqUbsWSXDwswFKFeFuyLJct380pDxI3AwCGwgXlwTHTiJZUK7f/WPmxOPjc33O3OfzkkbnnJk55/zOzJz5/uZ3G0UEZmbWXcuqToCZmVXLgcDMrOMcCMzMOs6BwMys4xwIzMw67riqE7AUJ554Yqxfv77qZJiZNcp99933s4hY2z+/kYFg/fr1LC4uVp0MM7NGkfT0oPkuGjIz6zgHAjOzjnMgMDPrOAcCM7OOcyAwM+u4XAKBpG9JekHSw0OWS9KfS9on6UFJ784s2yJpbzptySM9ZjabhQVYvx6WLUseFxaqTpEVKa8rgmuB80cs/xhwZjptBf4SQNJq4GvAe4ANwNckrcopTWa2BAsLsHUrPP00RCSPW7c6GLRZLoEgIv4OODRilY3AdyJxD/BmSScD5wG3RcShiPg5cBujA0rtOSdlTXfFFfDii0fPe/HFZL61U1kdyk4Bns28fi6dN2z+MSRtJbmaYN26dcWkcka9nFTvT9TLSQFs3lxdusym8cwz08235mtMZXFE7IiI+YiYX7v2mB7StdCUnJSvWqpV9+0/LJ9V0/zXzKrYH3U7Bsq6ItgPnJZ5fWo6bz/wgb75d5eUptw1ISflq5Zq1X37LyzA4cPHzl+5ErZvLz89Ratif9TyGIiIXCZgPfDwkGX/BvgBIOC9wD+k81cDTwGr0ukpYPW47zrnnHOijubmIpLqtaOn5csjdu2qOnWJYWmcm8v3e3btSj5TSh7r8vurVtb2X4pduyJWrjw2bWvWtHf/TbI/8jqWe58z6PvKOgaAxRh0jh40c9oJ+C7wPPAqSTn/F4BLgEvS5QK+ATwBPATMZ977R8C+dPr8JN+XRyAo4kQ17I8Eyfw6/JmkwemT8vuOQduhLr+/amVs/6Wqc5Ca1bD/+7j9kdexPOrcUOYxUGggKHuaNRAUeaLatSu5AqjrH6qMP3ubTyizqvO2qXOQmsWo//u4/ZHX/hp1JdCaK4Kyp1kDQdF/xjr/ocrIrdf591etzldLdQ5Ssxj1u8btj7yO5WGfU/Yx4ECQUfSJqu5/qKLL7+v++6tW1/qTooNUVb97kuKfYekq44qgzG3hQJBR9Imqzrm+MnT99zdZUSfrKo+JWf7vRdYRVPGfcCDIKGOn1DXXV5au/347WpVXibP+3/NuNVTlf2JYIFCyrFnm5+dj1ltVLiwkHb2eeSbpKHPBBXDLLUdeb99ej3bdZm2wbFlyCu4nwRtvFP/9/f/3rv6/Jd0XEfP98xvTszhvmzfDj3+cHITbt8POnfkOslVGz8G69U40G6bq3srZ//uPf9zNIDBKZwNBVt5DQ5QxeqNHiLQm2b496Z2cNai3sjM3FRlUXlT3Ke+exXm3Ilpqeeg0ZYhumWNNM+74rkuFapvhOoLh1q9PctT95uaSy8hpLaU8tH/8EUhyTDt2DL6MrbrM1Sxvef8P7ViuIxhh0svWSS2lPHTa4qmqy1zN8taEQRvbyoGAJMe9Y0eS85CSx2E58UksJbBM+yfIO3iZVc2Zm+o4EKTybFWwlMAy7Z8g7+BlVrWiMjeugJ7AoIqDuk91HYZ6Fq4oM8u/05X/V0djSGWxrwhqwjl8s/zb+1d518AmXYm41ZCZtVZVreumbQVYFrcaMrPOqaoCuin3L+/JJRBIOl/SY5L2Sdo2YPnVku5Pp8cl/SKz7PXMst15pMfMDKprXde0prAz37xe0nKS21B+hOQ2lfdK2h0Rj/TWiYj/mFn/K8C7Mh/xUkScPWs6zMz69Yphyh5wbt26wZ3j6toUNo8rgg3Avoh4MiJeAa4HNo5Y/9Mk9ziutSIreppUiWTWdFUMONe0fj55BIJTgGczr59L5x1D0hxwOnBnZvabJC1KukfSRcO+RNLWdL3FAwcO5JDs4Yoc0M2DxZm1X9NaAc7cakjSxcD5EfHF9PVngfdExKUD1r0MODUivpKZd0pE7Jd0BkmA+HBEPDHqO4tuNVTkmCceT8XMqlJkq6H9wGmZ16em8wbZRF+xUETsTx+fBO7m6PqDUvWKbAadqCGfip6mVSKZWfvlEQjuBc6UdLqkFSQn+2Na/0h6O7AK+GFm3ipJx6fPTwTeDzzS/94yZItshsmjosfjqZhZ3cwcCCLiNeBS4FbgUeDGiNgj6UpJF2ZW3QRcH0eXRb0DWJT0AHAXcFW2tVGZBrX7zcqroqdplUhmVp2yGpbM3HwUICJuAW7pm/df+l5/fcD7/h54Zx5pmNWoopm5uXybnP36rx8JOmvWwJ/9WX0rkcysGv29k3sNSyD/84V7FqeGFc30KnHz2PC9HXvw4JF5L700++eaWfuU2TvZgSBVRpFN07qdm1l1ymxY4kCQKqPdr1sMmdmkymxY4kCQUXQPRLcYMrNJldmwxIGgRG4xZGaTKrN3ci6thmwyVQ2AZWbNtHlzOecHXxGUrIoBsMysHE0dUNJXBGZmOSiz3X/efEVgZpaDJjcPdyAwM8tBk5uHOxCYmeVg9erp5teJA4GZWcc5EJiZ5eDQoenm14kDgZlZDiYdOaCOTUwdCMzMcjDJyAF1vWe5A8GU6hjNzax6kwwJUdcmprkEAknnS3pM0j5J2wYs/5ykA5LuT6cvZpZtkbQ3nbbkkZ6i1DWam1k9jBs5oK5NTGcOBJKWA98APgacBXxa0lkDVr0hIs5Op2vS964Gvga8B9gAfE3SqlnTVJS6RnMza4a6jkCcxxXBBmBfRDwZEa8A1wMbJ3zvecBtEXEoIn4O3Aacn0OaClHXaG5mzVDXEYjzCASnAM9mXj+Xzuv3B5IelHSTpNOmfC+StkpalLR44MCBHJI9vbpGczNrhjKHlp5GWZXFfwusj4jfI8n175z2AyJiR0TMR8T82rVrc0/gJOoazc2sOeo4AnEegWA/cFrm9anpvF+JiIMR8XL68hrgnEnfWyd1jeZmZrPIIxDcC5wp6XRJK4BNwO7sCpJOzry8EHg0fX4r8FFJq9JK4o+m82qrjtHcasjtjK1BZr4fQUS8JulSkhP4cuBbEbFH0pXAYkTsBv6DpAuB14BDwOfS9x6S9F9JggnAlRHRgA7ZZiM0eWB66yRFRNVpmNr8/HwsLi5WnQyzwdavT07+/ebmkstIs4pIui8i5vvnu2exWd7cztgaxoHALG9uZ2wN40Bglje3M7aGcSAwy5vbGVvDOBCYFWFUO2M3LbWambn5qJlNwU1LrYZ8RWA2Tp45eA9hazXkQGA2St43oRjXtNTFRlYBBwKzUfLOwY9qWuo7H1lFHAismcrKOefdOWxU01IXG1lFHAisecrMOefdOWxU01L3SLaKOBBY85SZcy6ic9iwpqXukWwVcSCw5ikz51xE57BhxVrukWwVcT8Ca5516waP7llUznnz5vza+E/Sj+CKK5Kgtm5dEgTcv8AK5isCa4ZsLvrwYVix4ujlTck5jyvW8p2PLKOsNhEOBFZ//ZXDBw8mj2vWHCmu2bIlOZnWvf29K4RtQmW2icglEEg6X9JjkvZJ2jZg+VclPSLpQUl3SJrLLHtd0v3ptLv/vWYDc9GvvgonnJDknLdvh507m9H+vogKYXdCa6VSWxNHxEwTye0pnwDOAFYADwBn9a3zQWBl+vxLwA2ZZYen/c5zzjknrEOkiOQUf/QkJcvn5gYvn5urMtWD7doVsXLl0elcuTKZP+3n9H53//ZZyudZ7Yw77JeC5PbBx5xT87gi2ADsi4gnI+IV4HpgY1+wuSsierHtHuDUHL43V85U1di4XHSTilvyaIWULTOA5PyQ5U5orVBma+I8AsEpwLOZ18+l84b5AvCDzOs3SVqUdI+ki4a9SdLWdL3FAwcOzJTgfu7ZX3PjmlU2rf39rBXCg8oM+k0bBJ0Tqp1SWxMPukyYZgIuBq7JvP4s8BdD1v0MyRXB8Zl5p6SPZwA/Bv75uO/Mu2ioSSULndUrCpGSx2zRR17FLWWkNQ/DygyWevAO2n4QsWaNi5gqlvehxJCioTwCwfuAWzOvLwcuH7DeucCjwD8b8VnXAheP+868A0ERZXFWsqJPvtOko+igNCznstTvG/V5rm+oXJ6HdpGB4DjgSeB0jlQW/07fOu8iqVA+s2/+qt7VAXAisJe+iuZBk68IrLbKOJgGBZtebmYpZ4pxVxj+I1Qm73zFsEAwcx1BRLwGXArcmub4b4yIPZKulHRhutr/AE4A/rqvmeg7gEVJDwB3AVdFxCOzpmla7tlvuSmj4npQhfN11yXniaXUOYyrS6ljpXtHlNWEVEmQaJb5+flYXFzM9TMXFtyz33Kwfv3g4S/m5pKTdB31D3vRr85pb7lly45tFAZJ/H/jjek/T9J9ETF/zPcsJXFt5J79losmXl72rjDWrDl2Wd3T3nJlNYhzIDDryaMJZRGjlZZh82b42c9g167mpb3FyspXuGjIDAYXj6xc6ROhVS7PYuthRUMOBGbQzLJ9sym5jsBslCYNU2GWMwcC67ZevcCwK+O6DlPRz0NE2Ax8hzLrrnHNJpvSYmaSu56ZjeArAuuuUYO3NanFTKkD11sb+YrAumtY+b/UrApi12/YjHxFYN3VtOGrh2nL77DKOBBYdzWxF/Agk/wOVybbCA4E1l159wKu6mQ77nf4zks2hjuUmeWhzj2T3VnOUu5QZlakOrfccWWyjeFAYJaHOp9sXZlsYzgQmOWhzifbKirFXTndKLkEAknnS3pM0j5J2wYsP17SDenyH0lan1l2eTr/MUnn5ZEes9LVuQVS2UNju3K6cWauLJa0HHgc+AjwHHAv8OnsLScl/THwexFxiaRNwMcj4lOSzgK+C2wA3grcDrwtIl4f9Z2uLLZa8m3uEq6crq0iK4s3APsi4smIeAW4HtjYt85GYGf6/Cbgw5KUzr8+Il6OiKeAfennmTWPb3OXqHN9iQ2URyA4BXg28/q5dN7AddKb3f8SWDPhewGQtFXSoqTFAwcO5JBsswZoYll7netLbKDGVBZHxI6ImI+I+bVr11adHLPiNbWsvc71JTZQHoFgP3Ba5vWp6byB60g6DvhN4OCE77Wua2KuOA917pswSlPv29xheVQWH0dSWfxhkpP4vcAfRsSezDpfBt6ZqSz+txHxSUm/A/wvjlQW3wGc6cpi+5U699gt2rJlg2+YIyX1EGZTKqyyOC3zvxS4FXgUuDEi9ki6UtKF6WrfBNZI2gd8FdiWvncPcCPwCPB/gC+PCwLWMU3NFefBZe1WEo81ZPXW5Vxxl6+GrBAea8iaqcu5Ype1W0kcCKzeBrVA+bVfg8OHu1F57L4JVgIHAqu3/lzxmjXJ48GDzWpSaTaBqhrIORBY/WVzxSecAK+8cvTyulQed7WZq+Wiym4jDgTWLHUbvqB38pfgs59tXuevaTjQFarKBnIOBNYsdao8zmbh4NjWTXW5UslDU3s5N8igcfpGzc+TAwHO6DRKnYYvGJSF69eWgda63J+jJMuXTzc/T50PBM7oNMywJpVQfjSf5CTflmaudSuSa6HXh3SlHTY/T50PBM7oNFB/k0qoJpqPO8m3aaC1OhXJtdTc3HTz89T5QOCMTgtUFc0HFVNJyWPbOn/VqUiupS644Mjh01PWJu58IHBGpwWqiuaDiqmuuy65Kmlb5y/3ci7UwgLs3Hl0ewMJtmwpZxN3fqwhD+fSAr41ojVcWYewxxoawhmdFnCxhTVc1UXUnQ8E4OFcGs/R3Bqu6iJqBwJrB0dza7CqL2pnCgSSVku6TdLe9HHVgHXOlvRDSXskPSjpU5ll10p6StL96XT2LOkxK5V7IlpOqr6onamyWNKfAoci4ipJ24BVEXFZ3zpvAyIi9kp6K3Af8I6I+IWka4H/HRE3TfO9vjGNVc6tDKyBiqos3gjsTJ/vBC7qXyEiHo+IvenzfwReANbO+L1m1XJPRGuRWQPBSRHxfPr8J8BJo1aWtAFYATyRmb09LTK6WtLxM6bHrBxVN/Mwy9HYQCDpdkkPD5g2ZteLpIxpaDmTpJOB64DPR0TvZrOXA28H/iWwGrhsyNuRtFXSoqTFAwcOjP9lZkWqupmHWY7GBoKIODcifnfAdDPw0/QE3zvRvzDoMyT9BvB94IqIuCfz2c9H4mXg28CGEenYERHzETG/dq1LlqxiVTfzMMvRrEVDu4Et6fMtwM39K0haAXwP+E5/pXAmiIikfuHhGdNjVo6qm3lYq5XdIG3WVkNrgBuBdcDTwCcj4pCkeeCSiPiipM+Q5Pb3ZN76uYi4X9KdJBXHAu5P33N43Pe61ZCZtVWRDdKGtRrq/FhD4ywsJA1BnnkmKf7dvt2ZPjMrTpHjDnmsoSXwTWtawh2/rEGqaJDmQDCCm4q3gKO5NUwVDdIcCEZwU/EWcDS3hqmiQZoDwQhuKl5zkxT5tCmau4irE6pokOZAMIKbitfYpEU+bYnmLuLqlLIH03UgGMFNxWts0iKftkRzF3FZgdx81Jpp2bKjb/DaIyXZqKw2tAGe5veaDTGs+ehxVSTGbGbr1g1ubD2oyGfz5uad+PtN83vNpuSiIWumthT5TKprv9dK5UBgzdS1Cpyu/V4rlesIctCGImgzaz8PMdEnrybZbtVnZk3XyUCQ58nbrfrMrOk6GQjyPHm3qeOqmXVTJwNBnifvtnRcNbPu6mQgyPPk7VZ9ZtZ0MwUCSasl3SZpb/q4ash6r0u6P512Z+afLulHkvZJuiG9rWXh8jx5u1WfmTXdrFcE24A7IuJM4I709SAvRcTZ6XRhZv6fAFdHxG8BPwe+MGN6JpL3ybvsAaLMzPI06z2LHwM+EBHPpzeivzsifnvAeocj4oS+eQIOAG+JiNckvQ/4ekScN+5769aPwMysCYrqR3BSRDyfPv8JcNKQ9d4kaVHSPZIuSuetAX4REa+lr58DTpkxPWZmNqWxg85Juh14y4BFRzW2jIiQNOzyYi4i9ks6A7hT0kPAL6dJqKStwFaAdW6SY2aWm7GBICLOHbZM0k8lnZwpGnphyGfsTx+flHQ38C7gb4A3SzouvSo4Fdg/Ih07gB2QFA2NS7eZmU1m1qKh3cCW9PkW4Ob+FSStknR8+vxE4P3AI5FUTtwFXDzq/WZmVqxZA8FVwEck7QXOTV8jaV7SNek67wAWJT1AcuK/KiIeSZddBnxV0j6SOoNvzpgeMzOb0kyBICIORsSHI+LMiDg3Ig6l8xcj4ovp87+PiHdGxL9IH7+Zef+TEbEhIn4rIj4RES/P9nOqMckAdr7vuJnVle9QNqPeAHa9sYt6A9jBkf4Ek6xjZlaVzgwxUVSOfJIB7DxCqZnVWSeuCIrMkU8ygJ1HKDWzOuvEFUGROfJJBrDzCKVm7dWG+r9OBIIic+TjBrBbWIDDh499n0coNWu+ttyhsBOBoMgc+agB7HoHycGDR79nzRqPUGrWBm2p/+vEzev76wggyZEXfTJevz7JIfSbm0tGKTWzZlu2LLkS6CcloxHXTadvXl/VPQNcSWzWbm2p/+tEIIBq7hnQloPEzAab9iZXS61YLrpCujOBoAq+jaVZu01T2rDUiuUyKqQ7UUdQpYWFpOLomWeSK4Ht211JbNZFS60zzLOucVgdgQOBmVkJllqxnGeFdKcri9ukDZ1XzLpoqXWGZdQ1OhA0SFs6r5h10VLrDMuoa3QgaJC2dF4x66KlNmMvo/m76wgapGmdV8ysXgqpI5C0WtJtkvamj6sGrPNBSfdnpn+SdFG67FpJT2WWnT1LetrO/RLMrAizFg1tA+6IiDOBO9LXR4mIuyLi7Ig4G/gQ8CLwfzOr/Ofe8oi4f8b0tJr7JZhZEWYNBBuBnenzncBFY9a/GPhBRLw4Zj0boKqhMsys3WYNBCdFxPPp858AJ41ZfxPw3b552yU9KOlqScfPmJ7Wq2KoDDNrt7F3KJN0O/CWAYuOaqsSESFpaM2zpJOBdwK3ZmZfThJAVgA7gMuAK4e8fyuwFWCdC8XNzHIz9oogIs6NiN8dMN0M/DQ9wfdO9C+M+KhPAt+LiFczn/18JF4Gvg1sGJGOHRExHxHza9eunfT3mZktWVc6cM5aNLQb2JI+3wLcPGLdT9NXLJQJIiKpX3h4xvSYmU1s1Im+Sx04Zw0EVwEfkbQXODd9jaR5Sdf0VpK0HjgN+H9971+Q9BDwEHAi8N9mTI+N0JXcjdkkxp3ou9SB0x3KxuiNHvr007B8Obz+etJap2mjiFZ1lzazuho3qmcbO3B60LklyOYYIAkC0MxLxC7lbswmMeoOggsLSSAYpKi2KlVesfuKYIRhOYaeJt17uI25G7NZDPt/r1kDL710bMYJiruKLuuK3VcESzDu3sJNuvewh6cwS/Ry3k8/nWSEsno99wcFgeXLiwsCW7ZUe8XuQDDCUscJryMPT2F2bHFvxJFg0Oupf+jQ4Pe+8cZ0QWCSop5eenrFzv1Ky2xGROOmc845J8qwa1fEypURyeFy9LRyZbK8SXbtipibi5CSx6al32xWc3OD/89zc9OtM86gc8egc8aw71rKd04CWIwB59TKT+pLmcoKBBFHTp4QsXz5kZ1T1UnUJ3OzpZMGn3ClI+tMehIfZdJgMiw9RWU2HQhaII8DtGoOZFalSU/Qsx6nkwScUelZvryY/4YDQQvkccmaVfZJuQ2BzJqtrGNwmoBT5n/CgaAFJs1lTKKKk3LegcxsKcrIAE3z/yozQzYsELgfQYOM6wlZ1WdNyn0ZrEt6oxI880zSwrAOoxG4H0EL5NkEdFSvyqK4L4N1SZPuHeJA0CB53qGsipPyoEAmwQUXFPedZjaeA0HD5JXLGHd1UcS4J5s3Jz0os705I2DnzmaN29QGHonWjjKo4qDuU1cri/M2rJKqyIrkulQYd7kZaxtbb3V5f04DtxoqXlsOxiJP1nm2fFqqNp4Ip1GXYJyXru/PaQwLBC4aykmb7mZUZEVyHSqMuz4k97T7t+7FSG3cn6Vv80HRYdIJ+ASwB3gDmB+x3vnAY8A+YFtm/unAj9L5NwArJvneOl4RtCmXVeRvqUPurQ5XJVWaZv/WYX+N07b9WeQ2p4iiIeAdwG8Ddw8LBMBy4AngDGAF8ABwVrrsRmBT+vyvgC9N8r11DARtOhiL/vNXXYTWpqC9FNPs3yZsqyakcRpF/p5CAsGvPmR0IHgfcGvm9eXpJOBnwHGD1hs11TEQtO1grPpkXaQm5HKLNun+bUIGp237s8htPiwQlFFHcArwbOb1c+m8NcAvIuK1vvmN1Lbx/pvUGWZaefbHaKpJ928d6nTGadv+rGKbjw0Ekm6X9PCAaWNxyRqYjq2SFiUtHjhwoMyvnkjbDsa2a3Ogy1NTMjht2p9VbPPjxq0QEefO+B37gdMyr09N5x0E3izpuPSqoDd/WDp2ADsgGWtoxjQVYvPmZh+AZv16x3Pdxsxpsyq2+dhAkIN7gTMlnU5yot8E/GFSFqa7gIuB64EtwM0lpMfMpuAMTvnK3uYz1RFI+rik50gqer8v6dZ0/lsl3QKQ5vYvBW4FHgVujIg96UdcBnxV0j6SOoNvzpIeMzObnoehNjPrCA9DbWZmAzkQmJl1nAOBmVnHNbKOQNIBYMCNFidyIkmP5rpxuqZT13RBfdPmdE2vrmlbarrmImJt/8xGBoJZSFocVFlSNadrOnVNF9Q3bU7X9OqatrzT5aIhM7OOcyAwM+u4LgaCHVUnYAinazp1TRfUN21O1/TqmrZc09W5OgIzMztaF68IzMwsw4HAzKzjWhkIJH1C0h5Jb0ga2sRK0vmSHpO0T9K2zPzTJf0onX+DpBU5pWu1pNsk7U0fVw1Y54OS7s9M/yTponTZtZKeyiw7u6x0peu9nvnu3Zn5VW6vsyX9MN3fD0r6VGZZrttr2PGSWX58+vv3pdtjfWbZ5en8xySdN0s6lpCur0p6JN0+d0iayywbuE9LTNvnJB3IpOGLmWVb0n2/V9KWktN1dSZNj0v6RWZZYdtM0rckvSDp4SHLJenP03Q/KOndmWVL316DblvW9ImK7qU8Qbr+FNiWPt8G/MmY9VcDh4CV6etrgYsL2F4TpQs4PGR+ZdsLeBtwZvr8rcDzwJvz3l6jjpfMOn8M/FX6fBNwQ/r8rHT944HT089ZXmK6Ppg5hr7US9eofVpi2j4H/MWA964GnkwfV6XPV5WVrr71vwJ8q6Rt9q+BdwMPD1l+AfADklv9vhf4UR7bq5VXBBHxaEQ8Nma1DcC+iHgyIl4huSfCRkkCPgTclK63E7gop6RtTD9v0s+9GPhBRLyY0/cPM226fqXq7RURj0fE3vT5PwIvAMf0nMzBwONlRHpvAj6cbp+NwPUR8XJEPAXsSz+vlHRFxF2ZY+gekptAlWGSbTbMecBtEXEoIn4O3AacX1G6Pg18N6fvHiki/o4k8zfMRuA7kbiH5OZeJzPj9mplIJhQFfdSPikink+f/wQ4acz6mzj2ANyeXhJeLen4ktP1JiW3C72nV1xFjbaXpA0kObwnMrPz2l7DjpeB66Tb45ck22eS9xaZrqwvkOQoewbt07xMmrY/SPfRTZJ6dzOsxTZLi9FOB+7MzC5ym40zLO0zba8y7lBWCEm3A28ZsOiKiKjsTmej0pV9EREhaWjb3TTKv5Pkhj49l5OcEFeQtCO+DLiyxHTNRcR+SWcAd0p6iORkt2Q5b6/rgC0R8UY6e8nbq40kfQaYB34/M/uYfRoRTwz+hEL8LfDdiHhZ0r8nuaL6UInfP84m4KaIeD0zr+ptlrvGBoKoyb2Up0mXpJ9KOjkink9PXC+M+KhPAt+LiFczn93LHb8s6dvAfyozXRGxP318UtLdwLuAv6Hi7SXpN4Dvk2QC7sl89pK31wDDjpdB6zwn6TjgN0mOp0neW2S6kHQuSXD9/Yh4uTd/yD7N66Q2Nm0RcTDz8hqSeqHeez/Q9967y0pXxibgy9kZBW+zcYalfabt1eWioV/dS1lJK5dNwO5Ial5691KGfO+lvDv9vEk+95hyyfRk2CuXvwgY2LKgiHRJWtUrWpF0IvB+4JGqt1e6775HUm56U9+yPLfXwONlRHovBu5Mt89uYJOSVkWnA2cC/zBDWqZKl6R3Af8TuDAiXsjMH7hPc0rXpGk7OfPyQpLb2UJyJfzRNI2rgI9y9NVxoelK0/Z2korXH2bmFb3NxtkN/Lu09dB7gV+mGZ7ZtldRtd9VTsDHScrIXgZ+Ctyazn8rcEtmvQuAx0mi+RWZ+WeQ/FH3AX8NHJ9TutYAdwB7gduB1en8eeCazHrrSSL8sr733wk8RHJC2wWcUFa6gH+VfvcD6eMX6rC9gM8ArwL3Z6azi9heg44XkqKmC9Pnb0p//750e5yRee8V6fseAz6W8/E+Ll23p/+D3vbZPW6flpi2/w7sSdNwF/D2zHv/KN2W+4DPl5mu9PXXgav63lfoNiPJ/D2fHtPPkdTpXAJcki4X8I003Q+RaRU5y/byEBNmZh3X5aIhMzPDgcDMrPMcCMzMOs6BwMys4xwIzMw6zoHAzKzjHAjMzDru/wPTby8hcT1iEgAAAABJRU5ErkJggg==",
Q
Quleaf 已提交
257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
      "text/plain": [
       "<Figure size 432x288 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      " You may wish to adjust the parameter settings to generate your own data set!\n"
     ]
    }
   ],
   "source": [
    "# Generate data set\n",
    "train_x, train_y, test_x, test_y = circle_data_point_generator(\n",
    "        Ntrain, Ntest, boundary_gap, seed_data)\n",
    "\n",
    "# Visualization\n",
    "print(\"Visualization of {} data points in the training set: \".format(Ntrain))\n",
    "data_point_plot(train_x, train_y)\n",
    "print(\"Visualization of {} data points in the test set: \".format(Ntest))\n",
    "data_point_plot(test_x, test_y)\n",
    "print(\"\\n You may wish to adjust the parameter settings to generate your own data set!\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Data preprocessing\n",
    "Different from classical machine learning, quantum classifiers need to consider data preprocessing heavily. We need one more step to convert classical data into quantum information before running on a quantum computer. In this tutorial we use \"Angle Encoding\" to get quantum data.\n",
    "\n",
    "First, we determine the number of qubits that need to be used. Because our data $\\{x^{k} = (x^{k}_0, x^{k}_1)\\}$ is two-dimensional, according to the paper by Mitarai (2018) we need at least 2 qubits for encoding. Then prepare a group of initial quantum states $|00\\rangle$. Encode the classical information $\\{x^{k}\\}$ into a group of quantum gates $U(x^{k})$ and act them on the initial quantum states. Finally we get a group of quantum states $|\\psi_{\\rm in}\\rangle^k = U(x^{k})|00\\rangle$. In this way, we have completed the encoding from classical information into quantum information! Given $m$ qubits to encode a two-dimensional classical data point, the quantum gate is:\n",
    "\n",
    "$$\n",
    "U(x^{k}) = \\otimes_{j=0}^{m-1} R_j^z\\big[\\arccos(x^{k}_{j \\, \\text{mod} \\, 2}\\cdot x^{k}_{j \\, \\text{mod} \\, 2})\\big] R_j^y\\big[\\arcsin(x^{k}_{j \\, \\text{mod} \\, 2}) \\big],\n",
    "\\tag{2}\n",
    "$$\n",
    "\n",
    "**Note:** In this representation, we count the first qubit as $j = 0$. For more encoding methods, see [Robust data encodings for quantum classifiers](https://arxiv.org/pdf/2003.01695.pdf). We also provide several built-in [encoding methods](./DataEncoding_EN.ipynb) in Paddle Quantum. Here we also encourage readers to try new encoding methods by themselves!\n",
    "\n",
    "Since this encoding method looks quite complicated, we might as well give a simple example. Suppose we are given a data point $x = (x_0, x_1)= (1,0)$. The label of this data point should be 1, corresponding to the **blue** point in the figure above. At the same time, the 2-qubit quantum gate $U(x)$ corresponding to the data point is,\n",
    "\n",
    "$$\n",
    "U(x) =\n",
    "\\bigg( R_0^z\\big[\\arccos(x_{0}\\cdot x_{0})\\big] R_0^y\\big[\\arcsin(x_{0}) \\big] \\bigg)\n",
    "\\otimes\n",
    "\\bigg( R_1^z\\big[\\arccos(x_{1}\\cdot x_{1})\\big] R_1^y\\big[\\arcsin(x_{1}) \\big] \\bigg),\n",
    "\\tag{3}\n",
    "$$\n",
    "\n",
    "Substituting in specific values, we get:\n",
    "\n",
    "$$\n",
    "U(x) =\n",
    "\\bigg( R_0^z\\big[0\\big] R_0^y\\big[\\pi/2 \\big] \\bigg)\n",
    "\\otimes\n",
    "\\bigg( R_1^z\\big[\\pi/2\\big] R_1^y\\big[0 \\big] \\bigg),\n",
    "\\tag{4}\n",
    "$$\n",
    "\n",
    "Recall the matrix form of rotation gates:\n",
    "\n",
    "$$\n",
    "R_x(\\theta) :=\n",
    "\\begin{bmatrix}\n",
    "\\cos \\frac{\\theta}{2} &-i\\sin \\frac{\\theta}{2} \\\\\n",
    "-i\\sin \\frac{\\theta}{2} &\\cos \\frac{\\theta}{2}\n",
    "\\end{bmatrix}\n",
    ",\\quad\n",
    "R_y(\\theta) :=\n",
    "\\begin{bmatrix}\n",
    "\\cos \\frac{\\theta}{2} &-\\sin \\frac{\\theta}{2} \\\\\n",
    "\\sin \\frac{\\theta}{2} &\\cos \\frac{\\theta}{2}\n",
    "\\end{bmatrix}\n",
    ",\\quad\n",
    "R_z(\\theta) :=\n",
    "\\begin{bmatrix}\n",
    "e^{-i\\frac{\\theta}{2}} & 0 \\\\\n",
    "0 & e^{i\\frac{\\theta}{2}}\n",
    "\\end{bmatrix}.\n",
    "\\tag{5}\n",
    "$$\n",
    "\n",
    "Then the matrix form of the two-qubit quantum gate $U(x)$ can be written as\n",
    "\n",
    "$$\n",
    "U(x) = \n",
    "\\bigg(\n",
    "\\begin{bmatrix}\n",
    "1 & 0 \\\\ \n",
    "0 & 1\n",
    "\\end{bmatrix}\n",
    "\\begin{bmatrix}\n",
    "\\cos \\frac{\\pi}{4} &-\\sin \\frac{\\pi}{4} \\\\ \n",
    "\\sin \\frac{\\pi}{4} &\\cos \\frac{\\pi}{4} \n",
    "\\end{bmatrix}\n",
    "\\bigg)\n",
    "\\otimes \n",
    "\\bigg(\n",
    "\\begin{bmatrix}\n",
    "e^{-i\\frac{\\pi}{4}} & 0 \\\\ \n",
    "0 & e^{i\\frac{\\pi}{4}}\n",
    "\\end{bmatrix}\n",
    "\\begin{bmatrix}\n",
    "1 &0 \\\\ \n",
    "0 &1\n",
    "\\end{bmatrix}\n",
    "\\bigg) \\, .\n",
    "\\tag{6}\n",
    "$$\n",
    "\n",
    "After simplification, we can get the encoded quantum state $|\\psi_{\\rm in}\\rangle$ by acting the quantum gate on the initialized quantum state $|00\\rangle$,\n",
    "\n",
    "$$\n",
    "|\\psi_{\\rm in}\\rangle =\n",
    "U(x)|00\\rangle = \\frac{1}{2}\n",
    "\\begin{bmatrix}\n",
    "1-i &0 &-1+i &0 \\\\\n",
    "0 &1+i &0 &-1-i \\\\\n",
    "1-i &0 &1-i &0 \\\\\n",
    "0 &1+i &0 &1+i\n",
    "\\end{bmatrix}\n",
    "\\begin{bmatrix}\n",
    "1 \\\\\n",
    "0 \\\\\n",
    "0 \\\\\n",
    "0\n",
    "\\end{bmatrix}\n",
    "= \\frac{1}{2}\n",
    "\\begin{bmatrix}\n",
    "1-i \\\\\n",
    "0 \\\\\n",
    "1-i \\\\\n",
    "0\n",
    "\\end{bmatrix}.\n",
    "\\tag{7}\n",
    "$$\n",
    "\n",
    "Then let us take a look at how to implement this encoding method in Paddle Quantum. Note that in the code, we use the following trick: \n",
    "\n",
    "$$\n",
    "(U_1 |0\\rangle)\\otimes (U_2 |0\\rangle) = (U_1 \\otimes U_2) |0\\rangle\\otimes|0\\rangle\n",
    "= (U_1 \\otimes U_2) |00\\rangle.\n",
    "\\tag{8}\n",
    "$$"
   ]
  },
  {
   "cell_type": "code",
Q
Quleaf 已提交
413
   "execution_count": 18,
Q
Quleaf 已提交
414 415 416 417 418 419 420 421
   "metadata": {
    "ExecuteTime": {
     "end_time": "2021-03-09T04:03:37.354267Z",
     "start_time": "2021-03-09T04:03:37.258314Z"
    }
   },
   "outputs": [],
   "source": [
Q
Quleaf 已提交
422 423 424 425 426 427 428 429
    "# Construct quantum circuit for data encoding\n",
    "def encoding_circuit(data, n_qubits):\n",
    "    cir = Circuit(n_qubits)\n",
    "    for i in range(n_qubits):\n",
    "        param = data[0] if i % 2 == 0 else data[1]\n",
    "        cir.ry(qubits_idx=i, param=np.arcsin(param))\n",
    "        cir.rz(qubits_idx=i, param=np.arccos(param**2))\n",
    "    return cir\n",
Q
Quleaf 已提交
430 431
    "\n",
    "\n",
Q
Quleaf 已提交
432
    "# Encode the data points to quantum states\n",
Q
Quleaf 已提交
433 434
    "def datapoints_transform_to_state(data, n_qubits):\n",
    "    \"\"\"\n",
Q
Quleaf 已提交
435
    "    :param data: shape [BATCHSIZE, 2]\n",
Q
Quleaf 已提交
436 437
    "    :param n_qubits: the number of qubits to which\n",
    "    the data transformed\n",
Q
Quleaf 已提交
438
    "    :return: shape [BATCHSIZE, 1, 2 ^ n_qubits]\n",
Q
Quleaf 已提交
439
    "    \"\"\"\n",
Q
Quleaf 已提交
440 441
    "\n",
    "    batchsize, _ = data.shape\n",
Q
Quleaf 已提交
442
    "    res = []\n",
Q
Quleaf 已提交
443 444 445 446 447
    "    init_state = zero_state(n_qubits)\n",
    "    for i in range(batchsize):\n",
    "        cir = encoding_circuit(data[i], n_qubits)\n",
    "        out_state = cir(init_state)\n",
    "        res.append(out_state.numpy().reshape(1, -1))\n",
Q
Quleaf 已提交
448 449 450 451 452 453 454 455 456 457 458 459 460
    "    res = np.array(res, dtype=paddle_quantum.get_dtype())\n",
    "    return res"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "quantum data after angle encoding"
   ]
  },
  {
   "cell_type": "code",
Q
Quleaf 已提交
461
   "execution_count": 19,
Q
Quleaf 已提交
462 463 464 465 466 467 468 469 470
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "As a test, we enter the classical information:\n",
      "(x_0, x_1) = (1, 0)\n",
      "The 2-qubit quantum state output after encoding is:\n",
Q
Quleaf 已提交
471 472
      "[[[0.49999997-0.49999997j 0.        +0.j         0.49999997-0.49999997j\n",
      "   0.        +0.j        ]]]\n"
Q
Quleaf 已提交
473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633
     ]
    }
   ],
   "source": [
    "print(\"As a test, we enter the classical information:\")\n",
    "print(\"(x_0, x_1) = (1, 0)\")\n",
    "print(\"The 2-qubit quantum state output after encoding is:\")\n",
    "print(datapoints_transform_to_state(np.array([[1, 0]]), n_qubits=2))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Building Quantum Neural Network \n",
    "After completing the encoding from classical data to quantum data, we can now input these quantum states into the quantum computer. Before that, we also need to design the quantum neural network.\n",
    "\n",
    "<img src=\"./figures/qclassifier-fig-circuit.png\" width=\"600px\" /> \n",
    "<center> Figure 3: Parameterized Quantum Circuit </center>\n",
    "\n",
    "\n",
    "For convenience, we call the parameterized quantum neural network as $U(\\boldsymbol{\\theta})$. $U(\\boldsymbol{\\theta})$ is a key component of our classifier, and it needs a certain complex structure to fit our decision boundary. Similar to traditional neural networks, the structure of a quantum neural network is not unique. The structure shown above is just one case. You could design your own structure. Let's take the previously mentioned data point $x = (x_0, x_1)= (1,0)$ as an example. After encoding, we have obtained a quantum state $|\\psi_{\\rm in}\\rangle$,\n",
    "\n",
    "$$\n",
    "|\\psi_{\\rm in}\\rangle =\n",
    "\\frac{1}{2}\n",
    "\\begin{bmatrix}\n",
    "1-i \\\\\n",
    "0 \\\\\n",
    "1-i \\\\\n",
    "0\n",
    "\\end{bmatrix}.\n",
    "\\tag{9}\n",
    "$$\n",
    "\n",
    "Then we input this quantum state into our quantum neural network (QNN). That is, multiply a unitary matrix by a vector to get the processed quantum state $|\\varphi\\rangle$\n",
    "\n",
    "$$\n",
    "|\\psi_{\\rm out}\\rangle = U(\\boldsymbol{\\theta})|\\psi_{\\rm in}\\rangle.\n",
    "\\tag{10}\n",
    "$$\n",
    "\n",
    "If we set all the QNN parameters to be $\\theta = \\pi$, then we can write down the resulting state:\n",
    "\n",
    "$$\n",
    "|\\psi_{\\rm out}\\rangle =\n",
    "U(\\boldsymbol{\\theta} =\\pi)|\\psi_{\\rm in}\\rangle =\n",
    "\\begin{bmatrix}\n",
    "0 &0 &-1 &0 \\\\\n",
    "-1 &0 &0 &0 \\\\\n",
    "0 &1 &0 &0 \\\\\n",
    "0 &0 &0 &1\n",
    "\\end{bmatrix}\n",
    "\\cdot\n",
    "\\frac{1}{2}\n",
    "\\begin{bmatrix}\n",
    "1-i \\\\\n",
    "0 \\\\\n",
    "1-i \\\\\n",
    "0\n",
    "\\end{bmatrix}\n",
    "= \\frac{1}{2}\n",
    "\\begin{bmatrix}\n",
    "-1+i \\\\\n",
    "-1+i \\\\\n",
    "0 \\\\\n",
    "0\n",
    "\\end{bmatrix}.\n",
    "\\tag{11}\n",
    "$$"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Measurement\n",
    "After passing through the PQC $U(\\theta)$, the quantum data becomes $\\lvert \\psi_{\\rm out}\\rangle^k = U(\\theta)\\lvert \\psi_{\\rm in} \\rangle^k$. To get its label, we need to measure this new quantum state to obtain the classical information. These processed classical information will then be used to calculate the loss function $\\mathcal{L}(\\boldsymbol{\\theta})$. Finally, based on the gradient descent algorithm, we continuously update the PQC parameters $\\boldsymbol{\\theta}$ and optimize the loss function. \n",
    "\n",
    "Here we measure the expected value of the Pauli $Z$ operator on the first qubit. Specifically,\n",
    "\n",
    "$$\n",
    "\\langle Z \\rangle =\n",
    "\\langle \\psi_{\\rm out} |Z\\otimes I\\cdots \\otimes I| \\psi_{\\rm out}\\rangle.\n",
    "\\tag{12}\n",
    "$$\n",
    "\n",
    "Recall that the matrix of the Pauli $Z$ operator is defined as:\n",
    "\n",
    "$$\n",
    "Z := \\begin{bmatrix} 1 &0 \\\\ 0 &-1 \\end{bmatrix}.\n",
    "\\tag{13}\n",
    "$$\n",
    "\n",
    "Continuing our previous 2-qubit example, the expected value we get after the measurement is\n",
    "\n",
    "$$\n",
    "\\langle Z \\rangle =\n",
    "\\langle \\psi_{\\rm out} |Z\\otimes I| \\psi_{\\rm out}\\rangle =\n",
    "\\frac{1}{2}\n",
    "\\begin{bmatrix}\n",
    "-1-i \\quad\n",
    "-1-i \\quad\n",
    "0 \\quad\n",
    "0\n",
    "\\end{bmatrix}\n",
    "\\begin{bmatrix}\n",
    "1 &0 &0 &0 \\\\\n",
    "0 &1 &0 &0 \\\\\n",
    "0 &0 &-1 &0 \\\\\n",
    "0 &0 &0 &-1\n",
    "\\end{bmatrix}\n",
    "\\cdot\n",
    "\\frac{1}{2}\n",
    "\\begin{bmatrix}\n",
    "-1+i \\\\\n",
    "-1+i \\\\\n",
    "0 \\\\\n",
    "0\n",
    "\\end{bmatrix}\n",
    "= 1. \\tag{14}\n",
    "$$\n",
    "\n",
    "This measurement result seems to be our original label 1. Does this mean that we have successfully classified this data point? This is not the case because the range of $\\langle Z \\rangle$ is usually between $[-1,1]$. \n",
    "To match it to our label range $y^{k} \\in \\{0,1\\}$, we need to map the upper and lower limits. The simplest mapping is \n",
    "\n",
    "$$\n",
    "\\tilde{y}^{k} = \\frac{\\langle Z \\rangle}{2} + \\frac{1}{2} + bias \\quad \\in [0, 1].\n",
    "\\tag{15}\n",
    "$$\n",
    "\n",
    "Using bias is a trick in machine learning. The purpose is to make the decision boundary not restricted by the origin or some hyperplane. Generally, the default bias is initialized to be 0, and the optimizer will continuously update it like all the other parameters $\\theta$ in the iterative process to ensure $\\tilde{y}^{k} \\in [0, 1]$. Of course, you can also choose other complex mappings (activation functions), such as the sigmoid function. After mapping, we can regard $\\tilde{y}^{k}$ as the label we estimated. $\\tilde{y}^{k}< 0.5$ corresponds to label 0, and $\\tilde{y}^{k}> 0.5$ corresponds to label 1. It's time to quickly review the whole process before we finish discussion,\n",
    "\n",
    "$$\n",
    "x^{k} \\rightarrow |\\psi_{\\rm in}\\rangle^{k} \\rightarrow U(\\boldsymbol{\\theta})|\\psi_{\\rm in}\\rangle^{k} \\rightarrow\n",
    "|\\psi_{\\rm out}\\rangle^{k} \\rightarrow ^{k}\\langle \\psi_{\\rm out} |Z\\otimes I\\cdots \\otimes I| \\psi_{\\rm out} \\rangle^{k}\n",
    "\\rightarrow \\langle Z \\rangle  \\rightarrow \\tilde{y}^{k}.\\tag{16}\n",
    "$$\n",
    "\n",
    "\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "###  Loss function\n",
    "\n",
    "To calculate the loss function in Eq. (1), we need to measure all training data in each iteration. In real practice, we devide the training data into \"Ntrain/BATCH\" groups, where each group contains \"BATCH\" data pairs.\n",
    "\n",
    "The loss function for the i-th group is \n",
    "$$\n",
    "\\mathcal{L}_{i} = \\sum_{k=1}^{BATCH} \\frac{1}{BATCH} |y^{i,k} - \\tilde{y}^{i,k}|^2,\\tag{17}\n",
    "$$\n",
    "and we train the PQC with $\\mathcal{L}_{i}$ for \"EPOCH\" times. \n",
    "\n",
    "If you set \"BATCH = Ntrain\", there will be only one group, and Eq. (17) becomes Eq. (1)."
   ]
  },
  {
   "cell_type": "code",
Q
Quleaf 已提交
634
   "execution_count": 20,
Q
Quleaf 已提交
635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656
   "metadata": {
    "ExecuteTime": {
     "end_time": "2021-03-09T04:03:37.439183Z",
     "start_time": "2021-03-09T04:03:37.432202Z"
    }
   },
   "outputs": [],
   "source": [
    "# Generate Pauli Z operator that only acts on the first qubit\n",
    "# Act the identity matrix on rest of the qubits\n",
    "def Observable(n):\n",
    "    r\"\"\"\n",
    "    :param n: number of qubits\n",
    "    :return: local observable: Z \\otimes I \\otimes ...\\otimes I\n",
    "    \"\"\"\n",
    "    Ob = pauli_str_to_matrix([[1.0, 'z0']], n)\n",
    "\n",
    "    return Ob"
   ]
  },
  {
   "cell_type": "code",
Q
Quleaf 已提交
657
   "execution_count": 21,
Q
Quleaf 已提交
658 659 660 661 662 663 664 665 666
   "metadata": {
    "ExecuteTime": {
     "end_time": "2021-03-09T04:03:37.503213Z",
     "start_time": "2021-03-09T04:03:37.473028Z"
    }
   },
   "outputs": [],
   "source": [
    "# Build the computational graph\n",
Q
Quleaf 已提交
667
    "class Opt_Classifier(paddle_quantum.Operator):\n",
Q
Quleaf 已提交
668 669 670 671 672 673 674 675
    "    \"\"\"\n",
    "    Construct the model net\n",
    "    \"\"\"\n",
    "    def __init__(self, n, depth, seed_paras=1):\n",
    "        # Initialization, use n, depth give the initial PQC\n",
    "        super(Opt_Classifier, self).__init__()\n",
    "        self.n = n\n",
    "        self.depth = depth\n",
Q
Quleaf 已提交
676
    "        paddle.seed(seed_paras)\n",
Q
Quleaf 已提交
677 678 679 680 681 682 683 684 685
    "        # Initialize bias\n",
    "        self.bias = self.create_parameter(\n",
    "            shape=[1],\n",
    "            default_initializer=paddle.nn.initializer.Normal(std=0.01),\n",
    "            dtype='float32',\n",
    "            is_bias=False)\n",
    "        \n",
    "        self.circuit = Circuit(n)\n",
    "        # Build a generalized rotation layer\n",
Q
Quleaf 已提交
686 687 688 689 690 691
    "        self.circuit.rz()\n",
    "        self.circuit.ry()\n",
    "        self.circuit.rz()\n",
    "\n",
    "        # Build the entangled layer and Ry rotation layer\n",
    "        for _ in range(depth):\n",
Q
Quleaf 已提交
692
    "            # The entanglement layer\n",
Q
Quleaf 已提交
693
    "            self.circuit.cnot()\n",
Q
Quleaf 已提交
694
    "            # Add Ry to each qubit\n",
Q
Quleaf 已提交
695
    "            self.circuit.ry()\n",
Q
Quleaf 已提交
696 697 698 699 700
    "\n",
    "    # Define forward propagation mechanism, and then calculate loss function and cross-validation accuracy\n",
    "    def forward(self, state_in, label):\n",
    "        \"\"\"\n",
    "        Args:\n",
Q
Quleaf 已提交
701 702
    "            state_in: The input quantum state, shape [BATCH, 1, 2^n]\n",
    "            label: label for the input state, shape [BATCH, 1]\n",
Q
Quleaf 已提交
703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741
    "        Returns:\n",
    "            The loss:\n",
    "                L = 1/BATCH * ((<Z> + 1)/2 + bias - label)^2\n",
    "        \"\"\"\n",
    "        # Convert Numpy array to tensor\n",
    "        Ob = paddle.to_tensor(Observable(self.n))\n",
    "        label_pp = reshape(paddle.to_tensor(label), [-1, 1])\n",
    "\n",
    "        # Build the quantum circuit\n",
    "        Utheta = self.circuit.unitary_matrix()\n",
    "\n",
    "        # Because Utheta is achieved by learning, we compute with row vectors to speed up without affecting the training effect\n",
    "        state_out = matmul(state_in, Utheta)  # shape:[-1, 1, 2 ** n], the first parameter is BATCH in this tutorial\n",
    "\n",
    "        # Measure the expectation value of Pauli Z operator <Z> -- shape [-1,1,1]\n",
    "        E_Z = matmul(matmul(state_out, Ob), transpose(paddle.conj(state_out), perm=[0, 2, 1]))\n",
    "\n",
    "        # Mapping <Z> to the estimated value of the label\n",
    "        state_predict = paddle.real(E_Z)[:, 0] * 0.5 + 0.5 + self.bias  # |y^{i,k} - \\tilde{y}^{i,k}|^2\n",
    "        loss = paddle.mean((state_predict - label_pp) ** 2)  # Get average for \"BATCH\" |y^{i,k} - \\tilde{y}^{i,k}|^2: L_i:shape:[1,1]\n",
    "\n",
    "        # Calculate the accuracy of cross-validation\n",
    "        is_correct = (paddle.abs(state_predict - label_pp) < 0.5).nonzero().shape[0]\n",
    "        acc = is_correct / label.shape[0]\n",
    "\n",
    "        return loss, acc, state_predict.numpy(), self.circuit"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Training process\n",
    "\n",
    "After defining all the concepts above, we might take a look at the actual training process."
   ]
  },
  {
   "cell_type": "code",
Q
Quleaf 已提交
742
   "execution_count": 22,
Q
Quleaf 已提交
743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786
   "metadata": {},
   "outputs": [],
   "source": [
    "# Draw the figure of the final training classifier\n",
    "def heatmap_plot(Opt_Classifier, N):\n",
    "    # generate data points x_y_\n",
    "    Num_points = 30\n",
    "    x_y_ = []\n",
    "    for row_y in np.linspace(0.9, -0.9, Num_points):\n",
    "        row = []\n",
    "        for row_x in np.linspace(-0.9, 0.9, Num_points):\n",
    "            row.append([row_x, row_y])\n",
    "        x_y_.append(row)\n",
    "    x_y_ = np.array(x_y_).reshape(-1, 2).astype(\"float64\")\n",
    "\n",
    "    # make prediction: heat_data\n",
    "    input_state_test = paddle.to_tensor(\n",
    "        datapoints_transform_to_state(x_y_, N))\n",
    "    loss_useless, acc_useless, state_predict, cir = Opt_Classifier(state_in=input_state_test, label=x_y_[:, 0])\n",
    "    heat_data = state_predict.reshape(Num_points, Num_points)\n",
    "\n",
    "    # plot\n",
    "    fig = plt.figure(1)\n",
    "    ax = fig.add_subplot(111)\n",
    "    x_label = np.linspace(-0.9, 0.9, 3)\n",
    "    y_label = np.linspace(0.9, -0.9, 3)\n",
    "    ax.set_xticks([0, Num_points // 2, Num_points - 1])\n",
    "    ax.set_xticklabels(x_label)\n",
    "    ax.set_yticks([0, Num_points // 2, Num_points - 1])\n",
    "    ax.set_yticklabels(y_label)\n",
    "    im = ax.imshow(heat_data, cmap=plt.cm.RdBu)\n",
    "    plt.colorbar(im)\n",
    "    plt.show()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Learn the PQC via Adam"
   ]
  },
  {
   "cell_type": "code",
Q
Quleaf 已提交
787
   "execution_count": 23,
Q
Quleaf 已提交
788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821
   "metadata": {
    "ExecuteTime": {
     "end_time": "2021-03-09T04:03:38.325454Z",
     "start_time": "2021-03-09T04:03:38.299975Z"
    }
   },
   "outputs": [],
   "source": [
    "def QClassifier(Ntrain, Ntest, gap, N, DEPTH, EPOCH, LR, BATCH, seed_paras, seed_data):\n",
    "    \"\"\"\n",
    "    Quantum Binary Classifier\n",
    "    Input:\n",
    "        Ntrain         # Specify the training set size\n",
    "        Ntest          # Specify the test set size\n",
    "        gap            # Set the width of the decision boundary\n",
    "        N              # Number of qubits required\n",
    "        DEPTH          # Circuit depth\n",
    "        BATCH          # Batch size during training\n",
    "        EPOCH          # Number of training epochs, the total iteration number \"EPOCH * (Ntrain / BATCH)\" is chosen to be about 200\n",
    "        LR             # Set the learning rate\n",
    "        seed_paras     # Set random seed to initialize various parameters\n",
    "        seed_data      # Fixed random seed required to generate the data set\n",
    "        plot_heat_map  # Whether to plot heat map, default True\n",
    "    \"\"\"\n",
    "    # Generate data set\n",
    "    train_x, train_y, test_x, test_y = circle_data_point_generator(Ntrain=Ntrain, Ntest=Ntest, boundary_gap=gap, seed_data=seed_data)\n",
    "    # Read the dimension of the training set\n",
    "    N_train = train_x.shape[0]\n",
    "    \n",
    "    # Initialize the registers to store the accuracy rate and other information\n",
    "    summary_iter, summary_test_acc = [], []\n",
    "\n",
    "    # Generally, we use Adam optimizer to get relatively good convergence\n",
    "    # Of course, it can be changed to SGD or RMSprop\n",
Q
Quleaf 已提交
822
    "    myLayer = Opt_Classifier(n=N, depth=DEPTH, seed_paras=seed_paras)  # Initial PQC\n",
Q
Quleaf 已提交
823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870
    "    opt = paddle.optimizer.Adam(learning_rate=LR, parameters=myLayer.parameters())\n",
    "\n",
    "\n",
    "    # Optimize iteration\n",
    "    # We divide the training set into \"Ntrain/BATCH\" groups\n",
    "    # For each group the final circuit will be used as the initial circuit for the next group\n",
    "    # Use cir to record the final circuit after learning.\n",
    "    i = 0  # Record the iteration number\n",
    "    for ep in range(EPOCH):\n",
    "        # Learn for each group\n",
    "        for itr in range(N_train // BATCH):\n",
    "            i += 1  # Record the iteration number\n",
    "            # Encode classical data into a quantum state |psi>, dimension [BATCH, 2 ** N]\n",
    "            input_state = paddle.to_tensor(datapoints_transform_to_state(train_x[itr * BATCH:(itr + 1) * BATCH], N))\n",
    "\n",
    "            # Run forward propagation to calculate loss function\n",
    "            loss, train_acc, state_predict_useless, cir \\\n",
    "                = myLayer(state_in=input_state, label=train_y[itr * BATCH:(itr + 1) * BATCH])  # optimize the given PQC\n",
    "            # Print the performance in iteration\n",
    "            if i % 30 == 5:\n",
    "                # Calculate the correct rate on the test set test_acc\n",
    "                input_state_test = paddle.to_tensor(datapoints_transform_to_state(test_x, N))\n",
    "                loss_useless, test_acc, state_predict_useless, t_cir \\\n",
    "                    = myLayer(state_in=input_state_test,label=test_y)\n",
    "                print(\"epoch:\", ep, \"iter:\", itr,\n",
    "                      \"loss: %.4f\" % loss.numpy(),\n",
    "                      \"train acc: %.4f\" % train_acc,\n",
    "                      \"test acc: %.4f\" % test_acc)\n",
    "                # Store accuracy rate and other information\n",
    "                summary_iter.append(itr + ep * N_train)\n",
    "                summary_test_acc.append(test_acc) \n",
    "\n",
    "            # Run back propagation to minimize the loss function\n",
    "            loss.backward()\n",
    "            opt.minimize(loss)\n",
    "            opt.clear_grad()\n",
    "            \n",
    "    # Print the final circuit\n",
    "    print(\"The trained circuit:\")\n",
    "    print(cir)\n",
    "    # Draw the decision boundary represented by heatmap\n",
    "    heatmap_plot(myLayer, N=N)\n",
    "\n",
    "    return summary_test_acc"
   ]
  },
  {
   "cell_type": "code",
Q
Quleaf 已提交
871
   "execution_count": 24,
Q
Quleaf 已提交
872 873 874 875 876 877 878 879 880 881 882 883 884 885
   "metadata": {
    "ExecuteTime": {
     "end_time": "2021-03-09T04:04:19.852356Z",
     "start_time": "2021-03-09T04:03:38.709491Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The dimensions of the training set x (200, 2) and y (200, 1)\n",
      "The dimensions of the test set x (100, 2) and y (100, 1) \n",
      "\n",
Q
Quleaf 已提交
886 887 888 889 890 891 892
      "epoch: 0 iter: 4 loss: 0.2157 train acc: 0.9000 test acc: 0.6900\n",
      "epoch: 3 iter: 4 loss: 0.2033 train acc: 0.4000 test acc: 0.5500\n",
      "epoch: 6 iter: 4 loss: 0.1467 train acc: 1.0000 test acc: 0.9700\n",
      "epoch: 9 iter: 4 loss: 0.1287 train acc: 1.0000 test acc: 1.0000\n",
      "epoch: 12 iter: 4 loss: 0.1215 train acc: 1.0000 test acc: 1.0000\n",
      "epoch: 15 iter: 4 loss: 0.1202 train acc: 1.0000 test acc: 1.0000\n",
      "epoch: 18 iter: 4 loss: 0.1197 train acc: 1.0000 test acc: 1.0000\n",
Q
Quleaf 已提交
893
      "The trained circuit:\n",
Q
Quleaf 已提交
894
      "--Rz(5.489)----Ry(4.294)----Rz(3.063)----*--------------x----Ry(2.788)--\n",
Q
Quleaf 已提交
895
      "                                         |              |               \n",
Q
Quleaf 已提交
896
      "--Rz(2.359)----Ry(4.117)----Rz(2.727)----x----*---------|----Ry(1.439)--\n",
Q
Quleaf 已提交
897
      "                                              |         |               \n",
Q
Quleaf 已提交
898
      "--Rz(2.349)----Ry(3.474)----Rz(5.971)---------x----*----|----Ry(1.512)--\n",
Q
Quleaf 已提交
899
      "                                                   |    |               \n",
Q
Quleaf 已提交
900
      "--Rz(1.973)----Ry(-0.04)----Rz(-0.01)--------------x----*----Ry(2.075)--\n",
Q
Quleaf 已提交
901 902 903 904 905
      "                                                                        \n"
     ]
    },
    {
     "data": {
Q
Quleaf 已提交
906
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAATQAAAD5CAYAAACpgMlBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAAdoUlEQVR4nO3dbYxc93Xf8e+Z2Zl9IpekuJStSIqt1koaJXCThpAb5IWNqiqkvpDqKG0ko21cuBHQWmmR1AUkoBAMFYXtNK3homoBWVErB2jlQC8CGiWqtlaMFqljkGiUAGIgl1ATi7RsiQ8rPu3u7MycvpihtF7POffO7AxnePn7AAPt7pn7oJ27h/9777nnb+6OiEgV1Ka9AyIi46KEJiKVoYQmIpWhhCYilaGEJiKVoYQmIpUxN+wCZnYf8CWgDjzr7p/fEf8A8BxwCDgH/G13P1W43rkFt+aeIJjnXaslcbMkNNpyAEYSz5ZNV5tvczJLFq14QmueQrnQdAqUZqcsqnP5HN3NS7v6QGsrtzntjVLv9fWzL7n7fbvZ3rCGSmhmVgeeBu4FTgHHzOyIu5/Y9rbfBL7i7s+b2V8BPgf8ncJ1N/cw9+MPDIzVmwvpsvXmYhybT2JzzTBWS2JFcavV41g9iWWJuUC2zd2Y1Hq925nIemdvm91rvs3I2a//xu5X0tmk8RMfL/XW1v95dnX3GxzOsH9BdwMn3f11d28BLwAP7njPXcDL/a9/b0BcRK5jVquXek3DsAntVuCNbd+f6v9suz8CfqH/9ceBvWZ2cLTdE5HZYpVKaGV8Bviomf0h8FHgNDBwrG9mj5rZcTM77iXPy0Vkimy2E9qwNwVOA7dv+/62/s/e5e7fpT9CM7M9wEPuvjZoZe7+DPAMQG1pdXaunorIQGZGvZFfX56mYRPaMeBOM7uDXiJ7GPjE9jeY2Spwzt27wBP07niKSEVMa/RVxlAJzd3bZvYY8BK9so3n3P1VM3sKOO7uR4CPAZ8zMwf+J/DpMutuLO/jRw7fPzC2uHc+XXZhOf4XY34h/l9szMexZrIcwGIj/lCbc/GZ/KgxgPkkXq+Ndjd+1OUmqdONB+tZbLOd31HMlm0ly6634ruj2XIAra142a3NdrxcFluPYwAbl7cG/nxtHCOr/innrBq6Ds3djwJHd/zsyW1fvwi8uPtdE5FZY+yuvGjShk5oInIjq9gITURuYFU75RSRG5gZtQrd5RSRG1jvGppGaCJSBTrlFJHqMGpKaMUa83Pc+qHBj3y+b3U5XfaW/XE3jkMrcexgUr+2lNSZFcUXG/Ft7YWklqxRcDs8rUNL2vxkq82WA6iN2D6oW9AeqJPEswYVW0lwq5Nvc6MTL5vVsF1JaskutfKasAsbcfzspVYYe3NtPYydPh/HAN45c2Xgz+v1MZRbmE45RaQiDCtsrTVNSmgiUp6uoYlIdSihiUhVWN51edqU0ESkNNMITUQqQ9fQylmcr3PXBw8MjP3kbfvSZW/ZE7cXWl2K78gcWGyEsaWk9AJgfi4uZ2gmLXma9TjWKGjlM5fEk9WCJ3UQWaxMPGIFB30y45YnsawyYytpDwTQShbOYllJx3o73+bZ9cGtfADOXInLNk4npUh7C1pbvRrsb20cZRtAfW48aaPEDHI/CjwP7O+/5/F+t5/Q7PYBEZGZY2ZYrdyrYD1XZ5C7n97ESo+Y2V073vbPgN9x95+h10z23xXtnxKaiAzFzEq9CpSZQc6Blf7X+4DvFq10Zk45ReT6UCvf5XjVzI5v+/6Z/jwiMHgGuY/sWP6zwH8zs18FloG/WrRBJTQRKc8oPJ3c5oy7H97F1h4B/qO7/ysz+zngt83sp/rzlQykhCYipfXaB41lHorCGeSATwH3Abj7N81sAVgF3opWqmtoIlKeGfV6rdSrwLszyJlZk95F/yM73vMd4J7eZu0ngAXg7WylMzNCW2zU+fDt+wfG7jy4lC57a9JRY6UZlw/saca/9KWkLAPANi/Fsa24G4KtxxMqW3sz32Ynvs1PN+n60E5i3biTBIAXxCOFtUpZPCsLqMdlOAtJDMCbi3GsER9j3T17w9h6Nz9O9s3H/58Hk7KhhSQhZLNXAby5NvgYm0tre8obxwit5Axy/wT4spn9Gr0bBJ90z9u4zExCE5HZZzbUTYFUiRnkTgA/P8w6ldBEZChJ3fPUKaGJyFBK1JhNjRKaiJRmZtSTzsnTpoQmIkMZU9nGRCihiUh5Nvo8E9fCzCS0Zr3G7fsGl1/86L74djvA6lJ8a3xvPe6UULtyJo5tXEy3WduM493LF0aLbQye3OLd+PrlMObtpKSjHXd88CQ2STYXlyyQxGrNuETHFvPJdGrLK2GsvjJ4gh6A2mK83PLS4A4xVy0ux+vNztyc+Jh/ZzOfmOXmlcHdZxpjKNsYY2HtRMxMQhOR60FxJ41pUkITkfLGWIc2CUpoIlKaAbUxPXEwCUpoIlKeRmgiUiW6hiYiFVGqG+3UKKGJSGnjfDh9EmYmoTXqxi17B9fP3LSYt6JZsbgGq7b2/TBWX18LY53zYQ85AFpJvHsxWe+luH5t60rcWghg63Ic72zEv4NOK641627lNU2TUmvEh97cQjyL19xC3CKosZK3mWrs3RPG6is3hbHagZvj5Q79SLrNrOXTgZVbwlgraRG0upTU8AH7gpnO6rXxPLKkU04RqQQzaOpZThGpAsOoa4QmIpVgKKGJSDUYSmgiUhFmMKeEJiJVYGa6KVBGvWbsXxi8O/uS2ZkAaufjma1qF+Lyiq23d04D+J7O2e+l22ydjVsPba7FM0JtrsVlG60LefugdlK20d6ISzM6rXjmps5WwaxPnXyGoYgVPO9Xb8SlOHOL8WHZWI7bBzWW4hjA/IF49qbFQ3Fbp/msrVNB+6V6XJlBfS7e3z2NfWHsQDJbFMD+oKxjHKeKvVNOJTQRqQhdQxORSjDd5RSRqlAdmohUSl0Pp4tIFejRJxGpDNWhlVQ3Y7kxOPPX1t9Jl62tnw9j7aQ0o/3974Sxje/HZRkAV96Kt7lxNi4B2FyLZ27avLCZbrN1KS4RaG/EXTOyWLcTz4oF0ynbqDfjWGM5LllYPJCXbSxcjMsv2hvx7z7rSJLPRwY2H+9TbX602aT2JL8fgD3zg/+sx5GHdA1NRCpFCU1EKkFlGyJSGXo4XUQqQ89yikilaIQmIpWga2glmcFiMJS1i3EZBED3wrkwlk12snkmXu7y986m21x/ay2MXTkTl2ZsnI87ZhSVbWxeiCfcyEozNpNuG9lkHJPUTP4o5pOyhPmVeJKUrct554vsd+QF5SuRejJpC0Bt7/4w1rjpffFyrbjEZL6eb3MpKImpjaHCf9avoc3uybCIzJ7+CK3Mq3BVZveZ2WtmdtLMHh8Q/6KZvdJ/fdvM1orWOTMjNBGZfYbRGEM/NDOrA08D9wKngGNmdsTdT1x9j7v/2rb3/yrwM0Xr1QhNREozoG7lXgXuBk66++vu3gJeAB5M3v8I8J+LVqoRmoiUN76Z028F3tj2/SngIwM3afYB4A7g5aKVKqGJSGm9EVrphLZqZse3ff+Muz8zwmYfBl5097xfPEpoIjKkIe6WnnH3w0HsNHD7tu9v6/9skIeBT5fZoBKaiJR29RraGBwD7jSzO+glsoeBT/zQ9sz+AnAA+GaZlc5MQqsBzeA3ZVvr6bKdi2thrJvEsjY/WQzyWrPLb41ahxbXmQFcTOqo1pM6qo2k1qyoDm3E7kGFB31Wh7aQzES1L6mpW1yPfz9Q3CopUmvGfybNvcvpss0DcT2jX4rbYtm++Jhv1ufTbc4H9ZxjaR9kxlx99/cS3b1tZo8BLwF14Dl3f9XMngKOu/uR/lsfBl5w91JH4swkNBG5PoxphIa7HwWO7vjZkzu+/+ww61RCE5HSjPE8cTApSmgiUp6e5RSRqtAITUQqZVzX0CZBCU1ESjMzGmO4yzkpM5PQDJhj8G11a8elDgB+OS6xaCUz/bQuxOUVrQt5qciobYDWk+UuJCUJABfacdnBelJfkZV0zGLZxmLyB5Ptz76CO/u1ZL2NxfhPYT45FloX42MIoLsex7NYdsw3FvJfbiP43dqY2gfN8CW02UloInJ90MzpIlIJuikgItVhMMOX0JTQRKS8cTV4nBQlNBEpTaecIlIdOuUsy6EbdEto5bMhdVvxLe7OejZTUhxrXc47X2Tx1qV49qHLW3EJxeWCGolLSdlGFstKM2axbGNS21xIP7N4JqXss86OL4Cty0n5RXLc1trxMVQ0z29UJzaOcZVGaCJSKTOcz5TQRGQ4tbGM9SZDCU1ESutNNDztvYgpoYlIeaZTThGpCMN0yiki1aERWhnuWGdw2YYnt7ABSOKdrXjijE5SttFp5RNqdJPyi3YymUlWJpF1xShaNl/v6GUbo00r0pv0JpOVZtRttP3dKij32Eo22kkmZsmOhez4Auhm8ey49nibRWUTk+6GoW4bIlIJQ040fM0poYnIUGY4nymhichwZrhqQwlNRMozG0/n20lRQhORoeimgIhUxgwP0JTQRKQ83eWcMi+o7YqXK6jPGnG9nYKZifJlR43FwVHrzCYp299RY0Xx7PPOY/lvMIt7N5nlK6lDK8onUcIZSx4ynXKKSIXMcD5TQhOR8jQvp4hUiso2RKQSNEITkQox3eUUkYqoYoNHM7sP+BJQB55198/viM8DXwF+FjgL/JK7/+nudnU0NmK/YCuYQqiWrDeLZf+6Ff3Ll+1SHsvWO51Zn0bd3939/uJ49nkXHQuZUY+/3YjKU3ZRMfQuc8fGsaIJGfq3bWZ14GngfuAu4BEzu2vH2z4FnHf3DwFfBL6w2x0VkRnh3XKvAmZ2n5m9ZmYnzezx4D1/y8xOmNmrZvafitY5ygjtbuCku7/e3+ALwIPAiW3veRD4bP/rF4F/a2bmPsOpXURKsRLJqnAd7w2M7gVOAcfM7Ii7n9j2njuBJ4Cfd/fzZnZz0XpHGQ/fCryx7ftT/Z8NfI+7t4F3gIMjbEtEZopDt1PulXt3YOTuLeDqwGi7XwGedvfzAO7+VtFKp9rayMweNbPjZnb87bNnp7krIlKG+7hOOcsMjH4M+DEz+30z+4P+tfvUKAntNHD7tu9v6/9s4HvMbA7YR+/mwA9w92fc/bC7Hz50UAM4keuBebfUC1i9OmDpvx4dclNzwJ3Ax4BHgC+b2f6iBYZ1DLjTzO6gl7geBj6x4z1HgF8Gvgn8IvCyrp+JVET5a2hn3P1wECszMDoFfMvdt4D/Z2bfppfgjkUbHDqhuXvbzB4DXqJXtvGcu79qZk8Bx939CPBbwG+b2UngHL2klzOD2uABo8018mWTeL0R/y/WF5pxrJkPXucW4vXWGvGyi0kJwEY3Lw9YTEoA8vKK+AAsmNxqYmUbzaTcPPsdZbFGwTYbybL1Rj2OJcdCvZn/CdWS4y89ri3e5nSHBj5MQsuUGRj9Lr2R2X8ws1V6p6CvZysdqQ7N3Y8CR3f87MltX28Af3OUdYvIDHPGktBKDoxeAv6amZ0AOsA/dff0YrueFBCRIcTz5w69puKBkQO/3n+VooQmIsMZzynnRCihiUh57tO+iJdSQhOR4WiEJiJVMY5HnyZFCU1EhjC2so2JmKGEZnht8O5YI64XA6g1F8JYfTFedi6pQ2su59tsLW/Fy+6J64uWtrKasHidPaM9qZbVfLW6o8+UlClq5TNqHdpyUou3L6klA5hfmY/3J/nMsmNhbjk+9iA/xiw5br0e70/RZ7IVfKZjufLlDt3x3OWchBlKaCIy6wydcopIlXSV0ESkElS2ISJVMaZHnyZFCU1EhuCYbgqISGVohFbMISzb8Ln4djuALS6HscZSfGu8uRIv17x4Jd3m/Hr8r1R3q7D98ED7C+LNzXibC0kZxEZSmjGLZRvZ/8ueubhsYzkpywCYX4lLKNKSjpXFOLY3PoYAaktLYSw7bn0u3tetgp5O7SA+lktf7mXaa0/NzCQ0Ebk+uO5yikg1aIQmIlXhKKGJSDW4O75V9Ije9CihicgQdMopIlXhjiuhFXOgFdxubszlHQ1qyythrL6yP4zN749LM9obm+k2vTPanR4LZraCfOYhgMbleKi/vBGXdGwlseKyjTQc2s2sT41kRq3mctyFIiu9AFhajcsvllbj8oqFg/HxNb9/T7rN+p79Yay2FK+33Yj3tegz22gPTjg+nn4bepZTRKpCIzQRqQrd5RSRytBdThGpDt3lFJGq0LOcIlIlepazBPf4dvTifN7RILs1Xt93MIwtbFyO92fEsgwASybyaCwmJQnJRB0ArUvxtYt2UprRacX/onYKOoP4iHUbVlC3kZWozCW/o7mkpKOobGPxQFwKsXjz/jC2dOhAGGveFC8HUEuOP1+ISz58Po5tXsw/s83g2C2o9ihJIzQRqQh3x9u6KSAiVaCyDRGpDp1yikhVOHhHCU1EKsH1LKeIVIhOOUWkEtzp6i5nsa7DRntwocxKM69D86V9Yax24FAYq7dbYWyxlrfyqTWzWqm4Hqq1N659m9+/kW6zfSWObyWzUGV1aKPOULVbtaQOLavVm1uIa/WaK3ELIMhb/SwcjI+hhUM3xftz8JZ0m/Uk3lmMt7nZjev4rmzlp3wXgprEzjgK0dx3VaM5aTOT0ERk9rnvruh80uKSdhGRH+J4t1vqVcTM7jOz18zspJk9PiD+STN728xe6b/+ftE6NUITkfLGNEIzszrwNHAvcAo4ZmZH3P3Ejrd+1d0fK7teJTQRKc3d6bTGclPgbuCku78OYGYvAA8COxPaUHTKKSJDGdMp563AG9u+P9X/2U4Pmdkfm9mLZnZ70UqV0ESkvP5dzjIvYNXMjm97PTrk1r4GfNDdPwz8d+D5ogVm5pSzi7PeHpzV2wv57Xhbitu71LtxOUO6zrlmHm/GM1E198b727oYzzS1dbmgbOPyehjrbCVlG+txeUrRv6TdEa+X1JIWSgC1RnzojVoSk/3eIS/rmNsfl2bUs9KfQ4MGFe/x5Xi93eS4vZSUZryzmR/Ta1cGnxKOpWyDoa6hnXH3w0HsNLB9xHVb/2fvbcf97LZvnwV+o2iDGqGJSGnuY7vLeQy408zuMLMm8DBwZPsbzGx7Ed8DwJ8UrXRmRmgicn0YddS+nbu3zewx4CWgDjzn7q+a2VPAcXc/AvwjM3sAaAPngE8WrVcJTUTK6zrd1miXcXZy96PA0R0/e3Lb108ATwyzTiU0ESnN0ZwCIlIVepZTRKpECa0ET7ptZLewAfYlt7/xeNlaLSsPyDt81PbuD2Pdi2thrL4ed9vIZqEC8FZc1tHZ2Iz3JzkAu0m5xyRlZRv1rKRjIS6XsYLyntryShzLZg47cHMYy8oyADp7VsPYOnHnkAtJacaZK3EZDsC5S4OPhc44ThUdujrlFJEqcHTKKSJV4U53Sw0eRaQKZrwfmhKaiAxBp5wiUhHu43lSYFKU0ERkCK7C2jLaXefc+uCLjcuN/Bn6RjKhydKeuFMC9bijhjUW021aMjFLI7nN303KNrKyDADfjLttzGUz8SQxL5qSbNQpywommbEsPheXM2RdTmqLeamNJaU4vhBPoNJd2JvE4uMAYKMeH0drG/HvNvpbADhbULbx1oXBZRtbnTF02+hCN5l0Z9pmJqGJyOxzXKecIlIRDj6mvmqToIQmIkPpjuPUdUKU0ESktFmfl1MJTUTKc8c1QhORSnDo6C6niFSBA13dFCjW6Trng9qbffOj7+ZWM65hW1yI2w41k9ojANuKa8a67biVj+2Jl7OslgywZAarLEYWS9orTZQltYVJWydPage9HtevAXQbcQ2bN+MatW4zbktU1Nrqwno8mjmb1JqdvhAfJ6fX8nrFcxcHH3/tcZwq6pRTRKpEdWgiUgm9u5waoYlIFSihiUhluNPZ0l1OEakAR08KiEhVaBq7ctpJ2cZSQfugrse38luduE3Nwlz8wczXLd1msx7fym8kbWrmavF66xQcKFnZRlZ+0bnOyjbqSdlGVtKRxABaychiI4mtX4l/f1cKyjbOr8fLvhnMzgRwKinb+LMz+exgl4NlxzVbk66hiUgl9DrWKqGJSBXopoCIVIbKNkSkKhy1DxKRqtA1NBGpDj2cXkq76+FsNkmlAwAb7XgIvLcZ/y8uNZLZopr5rEVzSdVBWpphSSyvTqFu8T7VkpgRd6GoJfsDUBAOecEx303e4EmVSXa2s5V1FSEv29hKWuJc3IzX+04Sg3yGpu8FXTEAXn/rUhh74+yVdJtXglmfxjGycs8/u2mbmYQmIrPPgZb6oYlIVXRmeIRWcJIjIvIeBzpe7lXEzO4zs9fM7KSZPZ687yEzczM7XLROjdBEpDT38YzQzKwOPA3cC5wCjpnZEXc/seN9e4F/DHyrzHo1QhORoYxphHY3cNLdX3f3FvAC8OCA9/1z4AtA3ne8TwlNREpznI6XexW4FXhj2/en+j97l5n9JeB2d/8vZfdvZk45290ubwVdAjoFd1WyjgdLjXgiioW5uNRhPqvLABpJaUYj6dTRqMXrzZaDvMQiKwdJNpkuN0nZAZ81hdhKgln5DsBmEt9I6kEu7aJs462ghALgzbX1MPadpDTjwpm8bOPS+cHdOLrt3T+D2bvLWfrtq2Z2fNv3z7j7M2UWNLMa8K+BTw6zfzOT0ERk9g15De2Mu0cX8k8Dt2/7/rb+z67aC/wU8A3r/aP7fuCImT3g7tuT5A9QQhORoYzpQYFjwJ1mdge9RPYw8ImrQXd/B1i9+r2ZfQP4TJbMQAlNRIbQK9sYxxMH3jazx4CXgDrwnLu/amZPAcfd/cgo61VCE5HSrtahjWVd7keBozt+9mTw3o+VWacSmoiU5q5Hn0SkQirz6JP1/Jv+owp/3K8TGfS+X+rHXzWzL4xnV0Vk2hzolnxNw7AjtPuBO/uvjwD/vv/fd5nZQeBfAj/r7m+b2fNmdo+7fz1bcbvjYc1Oq6C+aK0Z15otJm2AslqzZkEdWj2rQ0sKv7IWQUWtfNJas2TRbF+LtjkpWQuarO4wa/OzVXBxZyOpw1pvxbGLG3Gt2blk5iaAs5fi9kHnkvZBl9biwvgL5+P6NYD1898f+PNuNvtXaaWKZqdm2CcFHgS+4j1/AOw3s1t2vOfPAf/X3d/uf/8/gId2uZ8iMgPG+XD6JAw7QoseV3hz289OAj9uZh/sx/8GEE+cKSLXjXGVbUzK2G8KuPt5M/sHwFfpnUr/b+DPD3qvmT0KPAqwfPD9494VERmzWb/LWXjKaWafNrNXzOwVeiOx7HEFANz9a+7+EXf/OeA14NuD1u3uz7j7YXc/vLByYKT/ARG5tmb5lLMwobn70+7+0+7+08DvAn+3f7fzLwPvuPubO5cxs5v7/z0A/EPg2bHutYhMxdVTzjF025iIYU85jwJ/nd51sivA37saMLNX+kkP4Etm9hf7Xz/l7gNHaCJyfRnnkwKTYD4jF/jM7G3gz/rfrgJnprg7Mjx9ZrNp++fyAXc/tJuVmdl/ZdtD4wXOuPt9u9nesGYmoW1nZseTtiMyg/SZzaYb7XNRx1oRqQwlNBGpjFlNaKXa9MpM0Wc2m26oz2Umr6GJiIxiVkdoIiJDm2pCUzui60/RbNdmNm9mX+3Hv9V/plcmqMRn8gEz+3r/b+gbZnbbNPbzWpj2CG17O6JH6bUj+gHb2hHd4+4/CbzfzO65pnspwA/Mdn0/cBfwiJndteNtnwLOu/uHgC/SmyRWJqTkZ/Kb9LrkfBh4Cvjctd3La2faCU3tiK4vZWa7fhB4vv/1i8A9ZlNqunZjKPOZ3AW83P/69wbEK2PaCa1w9mS2tSMyszl67YhuR6ahzOf17nvcvQ28Axy8Jnt3YyrzmfwR8Av9rz8O7O2f+VTOtBNaIXc/D1xtR/S/gD8Fdj8FtMiN4zPAR83sD4GP0uuQU8m/oWs+SYqZfRr4lf63xyjZjgj4Wn/5R6noh3EdKJrtevt7TvVH1PuAs9dm925IhZ+Ju3+X/gjNzPYAD7n72rXawWvpmo/Q1I7ouvbubNdm1qQ32/XOCWGPAL/c//oXgZddxY6TVPiZmNmqmV39W38CeO4a7+M1M+1TzqPA6/Suk32ZXrICeu2Itr3vS2Z2Avh94PNqRzQd/WtiV2e7/hPgd67Odm1mD/Tf9lvAQTM7Cfw68ENlBDI+JT+TjwGvmdm3gfcB/2IqO3sN6EkBEamMaY/QRETGRglNRCpDCU1EKkMJTUQqQwlNRCpDCU1EKkMJTUQqQwlNRCrj/wPpPX8+eJdfQQAAAABJRU5ErkJggg==",
Q
Quleaf 已提交
907 908 909 910 911 912 913 914 915 916 917 918 919
      "text/plain": [
       "<Figure size 432x288 with 2 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
Q
Quleaf 已提交
920
      "The main program finished running in  44.9472119808197 seconds.\n"
Q
Quleaf 已提交
921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939
     ]
    }
   ],
   "source": [
    "def main():\n",
    "    \"\"\"\n",
    "    main\n",
    "    \"\"\"\n",
    "    time_start = time.time()\n",
    "    acc = QClassifier(\n",
    "        Ntrain = 200,    # Specify the training set size\n",
    "        Ntest = 100,     # Specify the test set size\n",
    "        gap = 0.5,       # Set the width of the decision boundary\n",
    "        N = 4,           # Number of qubits required\n",
    "        DEPTH = 1,       # Circuit depth\n",
    "        BATCH = 20,      # Batch size during training\n",
    "        EPOCH = int(200 * BATCH / Ntrain),\n",
    "                        # Number of training epochs, the total iteration number \"EPOCH * (Ntrain / BATCH)\" is chosen to be about 200\n",
    "        LR = 0.01,       # Set the learning rate\n",
Q
Quleaf 已提交
940
    "        seed_paras = 10, # Set random seed to initialize various parameters\n",
Q
Quleaf 已提交
941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968
    "        seed_data = 2,   # Fixed random seed required to generate the data set\n",
    "    )\n",
    "    \n",
    "    time_span = time.time()-time_start\n",
    "    print('The main program finished running in ', time_span, 'seconds.')\n",
    "\n",
    "if __name__ == '__main__':\n",
    "    main()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "By printing out the training results, you can see that the classification accuracy in both the test set and the training set after continuous optimization has reached $100\\%$."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Benchmarking Different Encoding Methods\n",
    "\n",
    "Encoding methods are fundemental in supervised quantum machine learning [4]. In paddle quantum, commonly used encoding methods such as amplitude encoding, angle encoding, IQP encoding, etc., are integrated. Simple classification data of users (without reducing dimensions) can be encoded by an instance of the ``SimpleDataset`` class and image data can be encoded by an instance of the ``VisionDataset`` class both using the method ``encode``."
   ]
  },
  {
   "cell_type": "code",
Q
Quleaf 已提交
969
   "execution_count": 25,
Q
Quleaf 已提交
970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "<class 'numpy.ndarray'>\n",
      "(100, 4)\n"
     ]
    }
   ],
   "source": [
    "# Use circle data above to accomplish classification\n",
    "from paddle_quantum.dataset import *\n",
    "\n",
    "# The data are two-dimensional and are encoded by two qubits\n",
    "quantum_train_x = SimpleDataset(2).encode(train_x, 'angle_encoding', 2)\n",
    "quantum_test_x = SimpleDataset(2).encode(test_x, 'angle_encoding', 2)\n",
    "\n",
    "print(type(quantum_test_x)) # ndarray\n",
    "print(quantum_test_x.shape) # (100, 4)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Here we define an ordinary classifier, and it will be used by different data afterwards."
   ]
  },
  {
   "cell_type": "code",
Q
Quleaf 已提交
1002
   "execution_count": 26,
Q
Quleaf 已提交
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068
   "metadata": {},
   "outputs": [],
   "source": [
    "# A simpler classifier\n",
    "def QClassifier2(quantum_train_x, train_y,quantum_test_x,test_y, N, DEPTH, EPOCH, LR, BATCH):\n",
    "    \"\"\"\n",
    "    Quantum Binary Classifier\n",
    "    Input:\n",
    "        quantum_train_x     # training x\n",
    "        train_y             # training y\n",
    "        quantum_test_x      # testing x\n",
    "        test_y              # testing y\n",
    "        N                   # Number of qubits required\n",
    "        DEPTH               # Circuit depth\n",
    "        EPOCH               # Number of training epochs\n",
    "        LR                  # Set the learning rate\n",
    "        BATCH               # Batch size during training\n",
    "    \"\"\"\n",
    "    Ntrain = len(quantum_train_x)\n",
    "    \n",
    "    paddle.seed(1)\n",
    "\n",
    "    net = Opt_Classifier(n=N, depth=DEPTH)\n",
    "\n",
    "    # Test accuracy list\n",
    "    summary_iter, summary_test_acc = [], []\n",
    "\n",
    "    # Adam can also be replaced by SGD or RMSprop\n",
    "    opt = paddle.optimizer.Adam(learning_rate=LR, parameters=net.parameters())\n",
    "\n",
    "    # Optimize\n",
    "    for ep in range(EPOCH):\n",
    "        for itr in range(Ntrain // BATCH):\n",
    "            # Import data\n",
    "            input_state = quantum_train_x[itr * BATCH:(itr + 1) * BATCH]  # paddle.tensor\n",
    "            input_state = reshape(input_state, [-1, 1, 2 ** N])\n",
    "            label = train_y[itr * BATCH:(itr + 1) * BATCH]\n",
    "            test_input_state = reshape(quantum_test_x, [-1, 1, 2 ** N])\n",
    "\n",
    "            loss, train_acc, state_predict_useless, cir = net(state_in=input_state, label=label)\n",
    "\n",
    "            if itr % 5 == 0:\n",
    "                # get accuracy on test dataset (test_acc)\n",
    "                loss_useless, test_acc, state_predict_useless, t_cir = net(state_in=test_input_state, label=test_y)\n",
    "                print(\"epoch:\", ep, \"iter:\", itr,\n",
    "                      \"loss: %.4f\" % loss.numpy(),\n",
    "                      \"train acc: %.4f\" % train_acc,\n",
    "                      \"test acc: %.4f\" % test_acc)\n",
    "                summary_test_acc.append(test_acc)\n",
    "\n",
    "            loss.backward()\n",
    "            opt.minimize(loss)\n",
    "            opt.clear_grad()\n",
    "\n",
    "    return summary_test_acc"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Now we can test different encoding methods on the circle data generated above. Here we choose five encoding methods: amplitude encoding, angle encoding, pauli rotation encoding, IQP encoding, and complex entangled encoding. Then the curves of the testing accuracy are shown below."
   ]
  },
  {
   "cell_type": "code",
Q
Quleaf 已提交
1069
   "execution_count": 27,
Q
Quleaf 已提交
1070 1071 1072 1073 1074 1075 1076
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Encoding method: amplitude_encoding\n",
Q
Quleaf 已提交
1077 1078 1079 1080
      "epoch: 0 iter: 0 loss: 0.2448 train acc: 0.7000 test acc: 0.5500\n",
      "epoch: 0 iter: 5 loss: 0.4895 train acc: 0.3000 test acc: 0.6100\n",
      "epoch: 0 iter: 10 loss: 0.1318 train acc: 0.8000 test acc: 0.5800\n",
      "epoch: 0 iter: 15 loss: 0.2297 train acc: 0.6000 test acc: 0.6500\n",
Q
Quleaf 已提交
1081
      "Encoding method: angle_encoding\n",
Q
Quleaf 已提交
1082 1083 1084 1085
      "epoch: 0 iter: 0 loss: 0.2437 train acc: 0.6000 test acc: 0.3900\n",
      "epoch: 0 iter: 5 loss: 0.1325 train acc: 0.8000 test acc: 0.7100\n",
      "epoch: 0 iter: 10 loss: 0.1397 train acc: 0.8000 test acc: 0.6600\n",
      "epoch: 0 iter: 15 loss: 0.1851 train acc: 0.6000 test acc: 0.6300\n",
Q
Quleaf 已提交
1086
      "Encoding method: pauli_rotation_encoding\n",
Q
Quleaf 已提交
1087 1088 1089 1090
      "epoch: 0 iter: 0 loss: 0.3170 train acc: 0.6000 test acc: 0.7000\n",
      "epoch: 0 iter: 5 loss: 0.2119 train acc: 0.7000 test acc: 0.7000\n",
      "epoch: 0 iter: 10 loss: 0.2736 train acc: 0.7000 test acc: 0.7000\n",
      "epoch: 0 iter: 15 loss: 0.2186 train acc: 0.7000 test acc: 0.7000\n",
Q
Quleaf 已提交
1091
      "Encoding method: IQP_encoding\n",
Q
Quleaf 已提交
1092 1093 1094 1095
      "epoch: 0 iter: 0 loss: 0.3279 train acc: 0.3000 test acc: 0.6200\n",
      "epoch: 0 iter: 5 loss: 0.1772 train acc: 0.7000 test acc: 0.7200\n",
      "epoch: 0 iter: 10 loss: 0.2051 train acc: 0.8000 test acc: 0.6500\n",
      "epoch: 0 iter: 15 loss: 0.1951 train acc: 0.7000 test acc: 0.6700\n",
Q
Quleaf 已提交
1096
      "Encoding method: complex_entangled_encoding\n",
Q
Quleaf 已提交
1097 1098 1099 1100
      "epoch: 0 iter: 0 loss: 0.5466 train acc: 0.4000 test acc: 0.2900\n",
      "epoch: 0 iter: 5 loss: 0.2075 train acc: 0.7000 test acc: 0.7000\n",
      "epoch: 0 iter: 10 loss: 0.2951 train acc: 0.7000 test acc: 0.7000\n",
      "epoch: 0 iter: 15 loss: 0.2614 train acc: 0.7000 test acc: 0.7000\n"
Q
Quleaf 已提交
1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
     ]
    }
   ],
   "source": [
    "# Testing different encoding methods\n",
    "encoding_list = ['amplitude_encoding', 'angle_encoding', 'pauli_rotation_encoding', 'IQP_encoding', 'complex_entangled_encoding']\n",
    "num_qubit = 2 # If qubit number is 1, CNOT gate in cir_classifier can not be used\n",
    "dimension = 2\n",
    "acc_list = []\n",
    "\n",
    "for i in range(len(encoding_list)):\n",
    "    encoding = encoding_list[i]\n",
    "    print(\"Encoding method:\", encoding)\n",
    "    # Use SimpleDataset to encode the data\n",
    "    quantum_train_x= SimpleDataset(dimension).encode(train_x, encoding, num_qubit)\n",
    "    quantum_test_x= SimpleDataset(dimension).encode(test_x, encoding, num_qubit)\n",
    "    quantum_train_x = paddle.to_tensor(quantum_train_x)\n",
    "    quantum_test_x = paddle.to_tensor(quantum_test_x)\n",
    "    \n",
    "    acc = QClassifier2(\n",
    "            quantum_train_x, # Training x\n",
    "            train_y,         # Training y\n",
    "            quantum_test_x,  # Testing x\n",
    "            test_y,          # Testing y\n",
    "            N = num_qubit,   # Number of qubits required\n",
    "            DEPTH = 1,       # Circuit depth\n",
    "            EPOCH = 1,       # Number of training epochs\n",
    "            LR = 0.1,        # Set the learning rate\n",
    "            BATCH = 10,      # Batch size during training\n",
    "          )\n",
    "    acc_list.append(acc)"
   ]
  },
  {
   "cell_type": "code",
Q
Quleaf 已提交
1136
   "execution_count": 28,
Q
Quleaf 已提交
1137 1138 1139 1140
   "metadata": {},
   "outputs": [
    {
     "data": {
Q
Quleaf 已提交
1141
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEWCAYAAABrDZDcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAABjEElEQVR4nO2dd3hVRfrHP296T0ihl4QOgdBraNKVJgqLCiqw9q67ll1XxVV3dfW3a8MuYBeRriJFpLcEqaGXQOjppLc7vz/OzeWmkoR7SbnzeZ775J5z5sx559yTec+8M/MdUUqh0Wg0GsfFqboN0Gg0Gk31oh2BRqPRODjaEWg0Go2Dox2BRqPRODjaEWg0Go2Dox2BRqPRODjaEdRyRCRURJSIuFTT9YeIyJkyjg0UkcPXyY5ZIvK1+XtzEUkXEWfzdgMR2SAiaSLyf2IwV0SSRWTH9bCvtlHe/axNiMg6EbnHRnnNE5FXbZFXTaNaKo+6iojEAg2AAiAP2AI8oJSKq067qgul1EagXTVc9zTgY7XrPiAB8FNKKREZCIwAmiqlMq6nbSISCpwEXJVS+dfz2lWllPtZIxGRWUBrpdS06raltqFbBLZnnFLKB2gEXATeq2Z77EZ1tUKqQAvggLoye7IFEFsVJ1CLyqzRVBjtCOyEUiob+BHoWLhPRNxF5C0ROS0iF0XkIxHxNB8bIiJnROQvInJJRM6LyAyrcz3NYY1TIpIqIpsKzzUz1Zxvgog8b3XeLBFZICJfm0Mj+0SkrYj8zXydOBEZaZV+hogcNKc9ISL3Wx0rtPFZEbkAzC1ebhF5TEQOiEjT4mEjEYkVkb+KyF5zGeaLiIfV8WfM5T4nIveYQ16tS7u/IhImIuvNdq4Ggq2OWcJlIjIPuBt4xhzeuB/4DOhn3n7ZfM5YEdktIikiskVEIorZ/ayI7AUyzPn2NadLEZE9IjLEKv06EXlFRDab7VslIoX2bTD/TTFfv18pZXMSkedE5LiIJIrIDyISWKxsd5fxezuLyN/N56aJyE4RaWY+1l9Eosz3PkpE+lf2flagfIjIXebnNFFEXjDfv+Fl/I7zROQDEVlhvh+bRaShiLwtRujukIh0s0rfWEQWiki8iJwUkcfM+0cDfwemmPPZY3WZFuXYOl5EYsy/4zoR6WB1rJuI/GE+bz5g/awGi8hP5vOSRGSjiNTe+lQppT82+gCxwHDzdy/gC+BLq+P/A5YBgYAvsBz4t/nYECAf+CfgCtwEZAL1zMdnA+uAJoAz0B9wB0IBBXwKeAJdgBygg/m8WUA2MAojFPglRmjiefN17gVOWtk4BmgFCDDYbEP3Yja+Yb62p3nfGfPxF4E/gBCr9GeK3Z8dQGPzPTiIEToDGA1cAMLN9+5rc7lal3GvtwL/NdsxCEgDvjYfK7wnLubtecCrVudOBzZZbXcDLgF9zPf2brOt7lZ27waamcvcBEg0/0ZOGGGmRKtyrwOOA23N6dcBr5dmWxllexzYBjQ1l+9j4Lti55f1ez8N7MMIyYn5eJD5ficDd2I8B7ebt4OqcD/LK19HIB0YALgBb2GESYeXUdZ5GGG7HhgV7VqM5/Mu82/xKvC7Oa0TsBPjOXMDWgIngFFWz/rXxfIvz9a2QIb593MFngGOmfN2A04BT5qPTTKX41Xzuf8GPjIfcwUGAlLddVCV667qNqAufTAqjHQgxfzQnAM6m4+J+aFrZZW+H+ZKGKPSzMKqgsConPqa/wGygC6lXLPwn7Sp1b4dwG3m77OA1VbHxpltdDZv+5rPDyijTEuAx61szAU8rI4PAc5iVCKbAP9ix4o7gmlW2/8BPjJ/n4PZKZq3W1OGIwCaYzgkb6t931J1R/Ah8EqxaxwGBlvZPdPq2LPAV8XSrwTuNn9fB/zD6thDwK+l2VbGPT8IDLPabmR+nlwq8HsfBiaUkuedwI5i+7aa70Vl72d55XsRs9Myb3uZn5nyHMGnVtuPAgettjsDKebvfYDTxc7/GzDX6lkvzRGUZesLwA9Wx5wwnuUhGM7wHFaVO0afX6Ej+CewlDJeVGrbR8c7bc/NSqk1YoywmACsF5GOgAnjn2KniBSmFYy3nkISVdEOxEyMTrpgjLel4+Vc90Ip5xVy0ep7FpCglCqw2sacPkVEbgRewnhbcjLbvM/q/HhlhL2sCcDokJ2ilEotx8bS7Gxs/t4YiLY6Vl4He2MgWRWN8Z/CeGOvCi2Au0XkUat9bla2FbenBTBZRMZZ7XMFfrfaLu/3qIg9i0XEZLWvAGMgwtXyb0bpz0ljjHtkzSmM1k1V7mdZ12+M1b1SSmWKSGI5+UDJ57P4dmHeLYDGIpJiddwZ2HiV/Muz1XJPlFImEYnDuCcFwFllrvXNWN+/NzEczyrz//MnSqnXr2JHjaX2xrRqOEqpAqXUIowHagBG8zcLCFdKBZg//sroWL4aCRjhnVb2s9jowwAWYjTnGyilAoBfMBxWIaXJ1SYDY4G5IhJZxcufxwiFFFJeJXQeqCci3lb7mlfxumBUXK9Z/S4BSikvpdR3VmlUsfRfFUvvXcGKoLT7V5o9NxbL30MpdbaC55b2nJzDqEitaY7xBmzL+1nkdxSjHyuoinkVJw6jBW19X3yVUjeZj1fk3lpT5J6IUaM348o9aSJWb21Y3ROlVJpS6i9KqZbAeOApERlWhTLVCLQjsBNiMAGoh9HUNWHEdf8nIvXNaZqIyKir5WU+dw7wX3NnmbOI9DNX3LbEDSNGHA/km1sHI8s/xWLjOmAqsEhEelfh2j8AM0Skg4h4YTTby7rWKYzWw8si4iYiAzBCXlXlU+ABEelj/t28RWSMiPiWkf5rYJyIjDL/Fh5idIw3LSO9NfEYrcOW5aT5CHhNRFoAiEiI+VmqCJ8Br4hIG3NZIkQkCMOhtxWRO8To7J6CEc//ycb380eMe9NfRNww3pql/FMqzA4gTYyOe0/zve8kIr3Mxy8CoZXotP0BGCMiw0TEFfgLRn/LFoywWT7wmIi4isgtgOW5FmNwQWuzo0jFeOEzlbhCLUE7AtuzXETSgcvAaxhx4xjzsWcxOqO2ichlYA0VH2f/V4wQTRSQhNFha9PfTymVBjyG8Q+SDNyB0bld0fNXAzMx7kH3Sl57BfAuRnjlGEZnKRj/mKVxB0bMOAkjlPVlZa5X7NrRGJ3m72OU+xhG7Lys9HEYYb+/Y1TscRidtFf9PZRSmRjPxWbziJO+pSR7B+O+rxKRNIx70aeCxfkvxu+3CuMZ/BzwVEolYrTa/oLRsf0MMFYplWA+zyb30/ysPwp8j/FWnY7R11XW71iZvAswytAVo0M5AcPx+ZuTLDD/TRSRPyqQ32FgGsYQ7wQM5zdOKZWrlMoFbsF4DpKAKcAiq9PbYPz/pmM4jQ+UUtahwVqFFA2BaTQ1A/Mwvv0YI3dqxcQrTUlExAdj8EQbpdTJajZHUwa6RaCpMYjIRDHmWtTDaPEs106g9iEi40TEy9zn8BZGSza2eq3SlId2BJqaxP0YYYTjGDHXB6vXHE0VmYDREXsOI4Rym9KhhxqNDg1pNBqNg6NbBBqNRuPg1LoJZcHBwSo0NLS6zdBoNJpaxc6dOxOUUiGlHat1jiA0NJTo6OirJ9RoNBqNBREpPrPcgg4NaTQajYOjHYFGo9E4ONoRaDQajYOjHYFGo9E4ONoRaDQajYOjHYFGo9E4ONoRaDQajYNT6+YRaOoOBampXP7lF1zq18c7MhInD4+rn6TRaGyOdgSa607umTMkffElKQsXojIzARBPT3wGDMB35Ah8Bg/G2c+vmq3UaBwH7Qg0142sfftInDOHtJWrwMkJ/zE3Ue/OuyhITSFtzRrS1/xG2urV4OKCd58++I4Yjs/QobjWr1/dpms0dZpapz7as2dPpSUmag/KZCJ93XqS5swhMzoaJx8fAqb8icA778S1YcMSabP27CFtzRrS1qwh79RpEMGza1d8hw/Hd8Rw3Jpfy9LEGo3jIiI7lVI9Sz2mHYHGHphyckhdupSkufPIPXkSl0aNCLzrLgImT8LZx+eq5yulyDl6lLTVq0lb8xs5Bw8C4N62Lb4jRuA7Yjju7dpRdG1xjUZTFtoRaK4b+cnJJH/3HcnffEtBYiLuHTsQNGMmfqNHIa6uRRNnp8LXt4KTCzTrY/70Bu/gEvnmnjljaSlk7fwDlMK1aVNLS8Gza1fE2fk6lVKjqX1oR6CxO7mnTpH0xRekLFqMys7Ge9BAgmbOxKtPn7Lf2hc/CHu/h8bd4PxeMOUZ+wNbXXEKzfpASHtwujLSOT8hgbS1a0lbs4bMrdtQeXk4BwfjO3QoviOG492nD+Lmdh1KrdHUHqrNEYjIaOAdwBn4TCn1erHj/wNuMG96AfWVUgHl5akdQc0ic9cukubMJW3NGnBxwX/cOAKn341H27bln3hwOcyfBgP/CsNegLxsOL8b4rZD3A7jb0a8kdbdD5r2uuIcmvQAD2NUUUF6Ounr15O2Zg0Z6zdgyszEyccHn8GD8R0xAp+BA3Dy9rbvTdBoagHV4ghExBk4AowAzgBRwO1KqQNlpH8U6KaUmllevtoRVD+qoIC0tWtJmjOXrF27cPLzo95tt1Fv2tSKjfBJvwQf9AW/JnDPb+BSytu7UpB88opTiNsBF2MABeIE9cOvtBia9YZ6oZhyc8nYssUYgbT2dwqSkxE3N7wjI/EdPhyfoTfgUq+eze+HRlMbqC5H0A+YpZQaZd7+G4BS6t9lpN8CvKSUWl1evlV1BG/seINDSYcqfZ7mCi65BXTaEU+vdReol5BNSqA70YMbsq9vffLcKxGfv3QAslKgcVc8shrhkV7BOQPKBHlZkJcJ+ZlGK8JUYBxzdgUXD3D1AjdPcPIg+FI2jWLTaXwqDa+MfEwCiQ29ONfCh/MtfMjydi3/ehpNDaNRi3o8M+zJKp1bniOw5zyCJkCc1fYZoE9pCUWkBRAGrC3j+H3AfQDN9fDB645XWh7dNl2g26aLeGXkc765N0vvbsORiECUcyVH7aRfhMwkCAzDI7sh4b+PRZT9lE6ynOB4WNF9TunQJMZul9Ro7Ea2S6xd8q0pE8puA35UShWUdlAp9QnwCRgtgqpc4Nnez1bdOgcl58RJkubNI3XJElRuLj433EDQzBm079mToVUZtpkcCx9GQqOuMGk5Kz6JIc49ifGPdcXZ1UbOIDMZLu43Phf2w6WDYMo1jvk2goadyHNuTkZcHpl7j5Fz7BgArk2a4N2nD159++LeuhXoYamaGohPvQF2ydeejuAs0Mxqu6l5X2ncBjxsR1s0FUQpRdbOnSTOmUv62rWImxv+EyYQOGM67i1bVj1jUwEseQgQmPghF2LTOLE7nt7jwmjY0t9m9oMvtGsO3GRs5ufChb3mfobtcHo5pF8wjnX2Ji+yC2kJwaQdSibzm9mkffkuWQ0b4jtsGL4jRuDVswfiUlPelzQa+2DPJzwKaCMiYRgO4DbgjuKJRKQ9UA/YakdbNFdB5eeTtmYNiXPmkr13L87+/gQ/9CD17rgDl+CS4/orzbYP4NRmmPAByr8ZWz77A08/N7oMa3b1c68FFzdo2tP49HvY6IROjbN0QrvGbSfQaTuBHQrIbymkp4WRdr6AlB/mk/zNNzgHBOBzww3GsNT+/bUwnqZOYjdHoJTKF5FHgJUYw0fnKKViROSfQLRSapk56W3A96q2TWioI5gyMkhZtJikL74g78wZXJs3p8GLLxAwcSJOnp62ucjFA/DbP6HdGOh6B6f2J3L+WCqDb2+Lm8d1ftsWgYDmxqfzJGNfTjqc+wOXuO0ExO0gIG47pg6XST/vTtr5AtJ+WUrq4sWIhzs+AwfgO3I0PkMG4+zre31t12jshJ5Q5qDkXbpE8jffkvz995hSU/Hs2pXAmTPwHTbMtjN083Phs6Fw+Tw8tA2TVzDzX91BQZ6J22f1wdm5Bi6JYTJB4lFLOEnFbifjwGnSznqQdsaDgmxncBa8O7fGd/QYfMfeaptWk0ZjR6pr1JCmBpJz7BiJc+dyedlyVH4+vsOHEzhjBl7du9nngutfhwv74LZvwSeEI1vPk3Qug5H3hNdMJwDGLOaQdsan+10I4JOZhM+ZKBqe2kbW9o2k7TxO2rGDXHj9KBdefxvP5j749uuK79hbcOs+3BjOqtHUErQjcACUUmRu30Hi3DlkrN+AeHgQMHkSgXfdhVtoqP0ufHo7bPofdJ0G7ceQn1fA9mUnqN/Cl9bda5m0tFcgtB2FtB2F1wjwKsij/oV95GxdQdradaTtOcOl+Zu4NH8T7vXy8e0YjO+gPrj3GYk06wPeQdVdAo2mTHRoqA6j8vK4vHIVSXPmkH3gAM6BgdSbNpV6t99u/xm2Oenw0QBjtNCDm8HDj12rT7Nl4TEmPNGVpu0D7Xv9aiD3QBRpS78nbeN2sk4kAuDqnY9v02x8w4Pw7NkPaWEW1wtuV0Q/SaOxNzo05GAUpGeQ8uMCkr78kvxz53ELC6PhP1/Gf/z46zfqZfULxryB6T+Bhx85mXns/DWW5h0D66QTAHDr2Iugjr0I+ptZGG/Vr6T9spSkXQdIOpyD84rf8W38M75Ns/Fu7oG0KKaf5K47nzXVg3YEdYi8ixdJ/uorkuf/gCktDa+ePWn4jxfwGTIYuZ5vn0dXQ/Qc6PcIhBoTYP5YdZqcjHz6Tmx1/eyoRlyCg6l3xzTq3TGNgrQ00tdvIG3NalLXryfleDZOHi74tDiKb/BmfBpl4+Qq0CC8qBx3QAs9sU1zXdCOoA6QffgwSXPmkvrzz2Ay4TtqJEEzZuAZEXH9jclMgqWPQEgHGPoCAOnJOez9LY42vRoQ0szx3nqdfX3xHzsG/7FjMGVnk7Flq1kYby2XD9dD3Fzxbt8A37Q8fM9/j3PUZ8aJPg2shPX6QKMu4OJevYXR1Em0I6ilKKXI2LKFpDlzydi8GfH0pN7ttxN49124NW1afYb9/BfITICpP4CrEYaK+vkkJpOiz/hrmJlcR3Dy8MB36A34Dr0BlZ9P5s4/jFXYfvuN9L0XOe9cD68u/fHtVB/foHRcz+8yJLsBnN2MtRusnYNPLet019RIdGdxLUPl5nJ5xQoS58wl5/BhnEOCCZx2J/Wm/AnngIDqNW7fj7DwzzD0HzDoaQCSL2Tw3cvb6TykKQOnXGWNAgdGKUX2/hjLKmy5x48D4BERge/APvi298fddMKYEX1+NxSY9ZPqhRZdxKd+R3DSK7XVZpRSmNLTyY9PoCAxgfzERPITEslPiMd36NAqt/R1Z3EdoCAtjZQffiDpy6/Iv3gRt9ataPTaa/iNG4tTTViN6/I5+PkpYwGZyCsyuduWnsDF3ZmeN4VWn221ABHBs3MnPDt3ov6TT5Bz4gRpqw2nED/7U+IBt1at8B0+Bt/x/8GjXi5yxrxWw/HfYe98IyM3X2ja44pzaNoLPGyp5aSpCkopTGlp5CckkJ+QQEFh5Z5o/h5vrvATEyhISETl5pbMxMkJ14aN7BLy1S2CGk7euXMkffkVKQsWYMrIwKtvX4JmzsB7wIDr2wFcHkrB17fA6W3wwCYIMjqEL5xIZeF/dtJ7XBi9xoRdJRNNWeRduEDamt+MpTmjoqCgAJfGjfAdNhzf4cPx6t4NST9rtYjPdmMRH2UCBOp3KBpOCmypO6FtgFIK0+XL5jf2BAoSEsyV+5UKPT/BqOALEhJQeXklM3F2xiUwEOfgYFyCgnAJCsI5OAiX4BBcgs3bQcG4BAfhHBBwTbP+9ZrFtZCsmBiS5s7j8ooVAPjdeCOBM6bjGR5ezZaVwo5P4Ze/wpj/g173AMY/yeL/+4OUS1lM+2ff668pVEfJT04m/fd1xtKcmzejcnJwrlcPn6E34DvcLIzn7g45aXB2p5VziIKcVCMTr6Ci4aTG3cDVRrpStRylFKbUVEs4piAxwfwWb1W5F1b8iYnlV+4hwbgEmSv44MIK3VypBwXhEhxsVO7X6YVOO4JaglKKjI0bSZwzl8xt23Dy8iLgT38i8K47cW3cuLrNK52EY8bEsRb9YdpCy5tm7L4Efp69l0G3taXzkGrsvK7DmDIySN+0mbTVq0lftw5TejpOXl54DxqE74jh+AwejLOPjzmxCRIOF10TOtFYiwEnF2NEkrVz8Kuhz1sVUEpRkJJy1XCM8T0RSqvcXVzMb+5GBe4SZFWhBwXjEhJsfpsPxtnfv+a01q3QjqCGY8rN5fLyn0iaN5eco8dwadCAwLvuJGDyZJz9KriMY3VQkA9zRkLicXhoG/g1AsBkUjVfWK6OoXJzydi+w+hs/u03ChISEFdXvPr1xXf4cHyHDcMlqJjMRUYCnIm64hzO7oT8bOOYT0MjhFQvFALDoF7Ylb9egdUeWlImEwWpqUY4psjbe2E4xqpyT0oqu3IvHo4p8vZufmsPCqqxlXtl0I6ghlKQmkry9/NJ+vorCuITcG/XjqCZM/C78UakJnQAX431b8Lvr8KkOdDpVsvuQ9vO89u8g4y8J5w2PRtUo4GOiSooIGvPHktnc15cHIjg2aO74RSGj8CtaZOSJ+bnwsV95pFJeyH5JCSdvLKQTyHuflCvRVHnEBhmOA2/puBctTBgico9PuHK27v5Td6IxZsr9/z8kpm4uhat3IuHY6wqeCd/f8SB+kq0I6hh5J45Q9IXX5KycCEqMxPvyEgCZ87Au3//2vNgntsFnw2HjhMMR2AmP6+Ab17ahpevG5Oe7Yk41ZLy1FGUUuQcOWJxCjmHDgHg3qEDvsOH4Tt8BO5t25T/3OVmQsopwykknzSkQyzfT4HJ6m3bycVY68HsHJR/Cwpc6pOv/CnI8yA/NcMcXy/WsRqfQH5yctmVe/HO1CIVfLClY9XRKvfKoB1BDSFr3z4S58whbeUqcHLCf8wYAmdMx6N9++o2rXLkZcHHgyHnMjy4xQgVmNm95jSbfzzG+Ce60qyOagrVZnLj4ixOIWvXLlAK1xbNzS2F4Xh26XLVEIgymShITjbCMfGXyD9zjPyzx8k/F0dB/EXyk5LJT82gID2X/GwBVbJiFmfB2c8Ll0B/XELq49ygCS4Nm1ji7YWdqS5BQTj5+enK3QboeQTViDKZSF+3nqQ5c8iMjsbJx4egmTOoN20arg0bVrd5VeO3V4yOx2kLiziBnMw8olfE0qxjoHYCNRS3Zs0ImjmDoJkzyI+PJ23t76StXk3Sl1+R9PkcXEJC8Bk2FM+ILhSkpJhj7cXe3pOSoaCgRN7i5mZ+W2+Oa7NgPIODcPbzxsVT4eKajYtzOs4k4pJ3AafMU0ja0aIZZPlARii4hYJzGEgYmEKhIAz8mzn0Gg+ZuflsOBJP56YBNAmw/Qgv7QjshCknh9SlS0maO4/ckydxadSI+s89S8CkSVdGctRGTm6AbbONYaKthxc5VCgs1+9mxxCWq+24hIRQb8qfqDflT4Yw3rr1pK1ZQ+qy5aR8b0xQE3d3y2gY10aN8Ozc2So0E2Q55hIcjJOPT+Xe3POyjZCTdagp6SQkHDGECwtyrqQVZwhoZoScSnRgh9ZJ5daUzFx+O3iJlTEX2HA0nuw8E3+7sT33D7b9/5cODdmY/ORkkr/7juRvvqUgMRH3jh0Imvln/EaNRFxr+RtNdip8GGlo3jywEdy8LYcyUnL4+oWthHUNYeSfa+BcB02FMWVnk3/xIs5BQTh5e1dPWMZkgrTzV5xD8b6JrOSi6b2CS45uKnQYPg2qfZRTRbmQms2qAxdYGXOBbSeSKDApGvp5MCq8AaPCG9I7LBCXKo7C06Gh60DuqVMkffEFKYsWo7Kz8R48iKAZM/Hq07vuxDdXPAeXz8LMVUWcAMAOLSxXZ3Dy8MCtRYtqNsIJ/JsYH7OUeRGyUgzHYO0okk4as9v3/2ieVW3G1ctwCqW1JvybgUv1jtA7EZ/OypiLrIy5wO64FABahnhz36CWjApvSEQTf5zsPOhCO4JrJHPXLpLmzCVtzRrExQW/8eMImj4d9zZtqts023JwOez51hCTa9aryKHkCxkc3HyeToOb4B+iZ6hqrgOeAeDZFRp3LXksPxdSTls5iVjz9xNwfC3kZ11JK07GkNfA0NKHw9pBp0kpRcy5y6yMMd78j1xMB6BzE3+eHtWOUeENaF3/+oa6tCOoAqqggLS1a0maM5esXbtw8vcn6L77qDf1Dlzr10FZ4PRLsPxxaBgBg54pcXjb0hO4uDrR88bQ62+bRlMcFzcIbm18iqMUpF0ovTVx6GdDQt0az8CSzqHwu0/DCi83WmBSRMcm8WvMBVbFXORsShZOAr3DAnlpXEdGhje0SydwRdGOoBKYsrJIXbKExHnzyDt1GtcmTWjw/PME3DIRJ2/vq2dQG1EKlj1mrEF8yyclmtEXTqRyYlc8vceF4eVXCybBaRwbEWMGvF8jaNGv5PHsy8WchPn7mSiIWQzKarSUi4fZMYSWbE0ENCcHFzYfS2Dl/ousOXiRxIxc3FycGNg6mMeHtWFYh/oE+dSMhYa0I6gA+YmJJH/zLcnffktBSgoenTtT/+3/4Tt8OOJSx2/hrq/hyAoY+ZqhYmmFUoqti4/j6etKl2HNqslAjcaGePhBowjjU5yCPEiNK9qKSI41Pic3Ql6GJakJIUkF4mlqQG+nhgwIaUWTHh1o3zECrwatwbPedStSRajjtdi1kXPiJEnz5pG6ZAkqNxefoUMJmjkDzx496k4HcHkkx8Kvz0GLAdD3oRKHT+1P5NzRFAbd1lari2rqPs6uhv5SYNEBEQnpOayJucDWfYe4EHuQxqYLtPdIpJdfKh1d4umbtR9JWAsJwA7zSR4BJUNNhX99G1c45GQr9H9vMZRSZO3cSeKcuaSvXYu4ueF/880ETr8b95YONCLGVABLHgIEJn5Y4sE0mRTblhzHL8STjgPrjlKlRlMRziRnWkb6RMcmYVLQtJ4no/uOZFSnhnRvXg9n65E+OelFZToK/57fYwzEMFlJazi7QUCL0vsm6oValoC1JdoRmFH5+aStWUPinLlk792Lc0AAwQ89RL2pd5RUbXQEtn0ApzbDhA8M7ZhiHNlxgcSzGYy8J1yri2rqPEopjl5K59f9xkifmHOXAWjf0JdHhrZhVHgDOjYqRwrD3QcahBuf4hTkw+Uzpc+XOLUVctOupB39BvR9wOblc3hHYMrIIGXRYpK++IK8M2dwbdGchi+9iP/NN+Pk6aBDIS8egN/+Ce3GQNc7ShzOzytg+7IThDT3pXX3OjhKSqPBaPXuPpPCSvNIn5MJRh9A9+YB/O3G9owKb0hosA0GiTi7XOl05oaix5SCzMQrzqFxt2u/Xik4rCPIu3TJ6AD+/ntMqal4dutG/WefwXfo0GtaDq7Wk58Li+4zxk+Pe6fUGZn7158lPSmHoXd10OqimjpFXoGJ7SeSjMr/wAUuXs7BxUno1yqIPw8IY2THBtT3s31opkxEwDvY+DQtdVKwTXA4R5Bz7BiJc+dyedlyVH4+vsOHEzhjBl7d7eNpax3rXzc06W/7FnxCShzOycrXwnKaOkVWbgHrj8SzKuYCvx26RGpWHp6uzgxuG8KoTg0Y2q4B/l61XB7mKjiMI8javZv4Dz8kY/0GxMODgMmTCLz77uqfSl+TOL0dNv0Puk6D9mNKTbJr5SktLKep9aRm5vHbIaOzd/0RQ9DN39OVYR3qMyq8IYPahODp5jiRAYdxBNmHDpO9bz/Bjz1Kvdtvx6VezRrHW+3kpMPi+43p9qP/XWqSjJQc9vwWR5teDQhpXvfUHjV1m4uXs1l14CKrYi6w9Xgi+SZFAz93/tSzmUXQzdVBBz44jCPwv2Ui/hNvxsm9Zszkq3GsfsHokJr+kzGpphSitLCcppZxMiHDoumz63QKAC2DvblnYEtGhTegS9MAuwu61QYcxhE41YY1gKuLo6sheg70e6R0pUcMYbkDWlhOU8MpFHRbFXOBlTEXOXzRGHrZqYkffxnRltGdGtK6fiXXTXAAHMYRaMogMwmWPgIhHWDoC2Um266F5TQ1lAKTYuepZH7db4z0OZNsCLr1Cg3kxbEdGRnegKb1vKrbzBqNdgSOzs9/McYpT/2hzBmLF06kcnxXPL3G2kZY7lJaNpuPJbDxSALbTybh7uJE8yAvmgcanxZB3rQwb3u4Ok6Hnabi5OQXsOVYIitjLrD6gFnQzdmJAW2CeXRoa4Z3aFBjBN1qA9oRODL7foSYRUZLoFGXUpNYC8t1HV41YbnsvAJ2nExi07EENhyJ59AFo7lez8uV/q2CUShOJWayMzaZtJz8IufW93U3OwXDObQI8qJZoBctAr0I9HbTTXwHIj0nn3WHL7Ey5iK/H7pEek4+Pu4u3NC+PqPCGzCkXX183HWVVhXsetdEZDTwDuAMfKaUer2UNH8CZgEK2KOUKjmVVWN7Us/Cz09B014Q+USZyU7HJFVaWM5kUhy6kMbGo/FsOma89efmm3BzdqJHi3o8M7odA1uHEN7Yr0hHnVKK5Mw8TiVmcDopk9OJmZwy/910LJ6Ff+QUuY6Pu4u5BWFuTQR50cLsMBr5e1R5ST9NzSExPYc1By+yMuYim44lkJtvIsjbjbERjRgV3pD+rYNwd9GtxmvFbo5ARJyB2cAI4AwQJSLLlFIHrNK0Af4GRCqlkkVE6xVcD5SCpQ8bsroTPzamuJeCyaTYuviYISw3oHxhuYuXs9l0NMFS+Sek5wLQtoEPd/ZtwYA2wfQJC8TLrexHTkQI9HYj0NuNbs1LDu/NzisgLimTUxYHYTiMwxfT+O3gJXILrixP6OIkNKnnaXEULQK9DUdhdhrl2aGpXs6mZLHSrOkTZRZ0axLgybQ+LRjdqSE9WhQTdNNcM/b8b+gNHFNKnQAQke+BCcABqzT3ArOVUskASqlLdrRHU0jUZ3DidxjzfxBU9sSwo9bCci5F366zcgvYfjKRjUcT2HQ0wTI6I8jbjQFtghnYJoQBrYNp6G+76fgers60aeBLmwYl5zAUmBQXLmdzKjGjmLPIZE/cOS5nFw05Bfu4mx2El6V/ojAEFeyjQ07XE6UUxy6lszLmAr/GXGD/WUPQrV0DXx65oTUjwxsS3rgcQTfNNWNPR9AEiLPaPgP0KZamLYCIbMYIH81SSv1aPCMRuQ+4D6B585JKmJpKkHAMVr0ArYZBzz+XmSw/r4BtVsJyJpPiwPnLbDS/9UfHJpNbYMLNxYneoYFM7N6EgW2C6dDQr1rGZTs7CU0CPI3l/krxbamZeZxKyuBUYiankzIt4adtJxJZvPssSl1J6+XmbNVx7UXzIG9amL83DvB02ElHtsRkUuw5k8LKGGOC1wmzoFu35gE8ZxZ0C7OFoJumQlR3+9gFaAMMAZoCG0Sks1IqxTqRUuoT4BOAnj17KjRVoyAfFt8HLu4wYXapgnKFFArLOfcJ5vH5u9l0LIGkDCPc076hL3f3b8HANiH0Cg2sFVPx/b1cifAKIKJpQIlj2XkFnEnOMrckMiwtiRMJGaw7Ek9u/pWQk7OT0DjA40qoKdCqfyLIW3dWlkNegYkdJ5Msap4XLmfj4iT0bRnEjMhQRnRsaNMWpKbi2POpPQtYDzNpat5nzRlgu1IqDzgpIkcwHEOUHe1yXDb9D87uhElzjDVbi5GZm8/2E0lsPHARnzXxnHcpYMHWYwT7uDOkbQgD2gQzoHXw9VVfvA54uDrTur4Prev7lDhmMikupeUUcRCnk4yw04p950nOzCuSPsjb7UqoKdDcmjA7jBBfd4cLb2TnFbDhSDwrY4x1e1Oz8vBwdWJw2xCeCW/HsPZ1X9CtNmBPRxAFtBGRMAwHcBtQfETQEuB2YK6IBGOEik7Y0SbH5dwuQ1m0063GByOuHnMu1RLu2XkqmbwCxeAcV3qbXGg9sikr+jShfUNfh6vACnFyEhr6e9DQ34M+LUsuUHQ5O++Kc0jM5LQ5/BQdm8zyPecwWbVfPVydzCGnkkNhm9bzws2lboScUrPyWHvoIiv3X2T9kXiy8grw83BheIcGjAxvyOC2jiXoVhuwmyNQSuWLyCPASoz4/xylVIyI/BOIVkotMx8bKSIHgALgaaVUor1scljysmDR/eAdwrkBr7Ix6jQbjiaw5ViC5Y22YyM/Zg4Io2/DAA7POUzLXiGMvLnDVTLW+Hm40qmJP52a+Jc4lptv4mxKlqU/orB/onA4bHbelZCTk0Ajf89Sh8I2D/LCz6NmvzVfMgu6rbQSdKvv686kHk0ZFd6QPi0dV9CtNiBK1a6Qe8+ePVV0dHR1m1FrSM/JJ3HhX2hxZB7PeM7ih+S2gDFRa2CbEAa1DaZ/q2BCfI1ZmOu+OcTBzee54+U++Ifoafn2QilFfFqOJdxUOBy2cDvR3B9TSICX65VQU7GRTg18Paqlgz7WWtAtLgWlICzYm5HhDRgV3pCuWtCtRiEiO5VSpa5uo3u26hgFJsW+s6lsPBLPxqMJuMVt4mvXeXxjGsml+pH8o38wg9qG0KYU4S2LsNygJtoJ2BkRob6fB/X9POgVWnKBn/ScfHPIKcMyFDYuKZM9cSn8su88BVYxJ3cXJ0uIqVnhvAnzUNhmgZ42m3CllDFyrHCkT+EM8fDGfjw53BB0K+250tR8tCOoA8QlZRrj+Y/Fs/lYIqlZRrindyNnZnt/RpZ7KJMe/JypXqXLSxeyfZlZWO6m0OtgtaY8fNxd6NjYj46NS/5meQUmzqVkXQk1FY52Ssxk64lEMnMLLGlFoKGfx5WJdUHeRYbGBniVrx1VYFL8cTrZmOB14AJxSVmIWdDthbEdGdmxAc0C9UtDbUc7glpIWnYeW4+bJ3MdS7Asqt3I34NR4Q0Y0CaEyFZBBK1+AvZegjtXwVWcwIWTqRz/w3bCchr74ersZBbmKznOXilFYkZukY7rwn6J3w/HE592pkh6Pw8XwzkUGenkRU6+iVVmQbeEdEPQLbJ1EA8Pac3wjg0I1oJudQrtCGoB+QUm9pxJtUg47IpLocCk8HJzpm/LIO7q14KBbYJpFWLVLD+4HPZ8C4Oehma9ys1fKcXWRdcmLKepGYgIwT7uBPu406NFSZmOzNx8i2M4bTUDO+ZsKiv3XyDfKuTk7ebMkPb1GR3ekCHtQvCt4R3WmqqjHUEN5XRiJhuOxrPxaDxbjieSlp2PCEQ08eeBwS0Z2CaE7s3rlT7kMP0SLH8cGkbAoGeufi2zsNzAKRUXltPUTrzcXGjf0I/2DUu2EPMLTJxPzeZ0UiYFJkXvsEAtA+4g6P/6GkJqVmG4x+jkPZ2UCRhiW2M6N2JgmxD6twqinvdVwjZKwbLHjDWIb/kEXMpPr0yGzLRfsAfhA8sXltPUbVycjU5nHfN3PK7qCERkHPCzUsp0tbSaipNXYGJPXAobjiaw6Wg8u+NSMCmjOd6vVTB/HhDGwDbBhAV7V24Uxq6v4cgKGPka1L/6PIAjURdJPJvOyD+XFJbTaDSOQUVaBFOAt0VkIcaksEN2tqlOopQiNjGTTUfj2XA0ga3HE0nPycdJIKJpAI/c0JoBbULo1jyg6hNvkmPh1+cgdCD0feiqyQvyTGxfahaW66EVwDUaR+WqjkApNU1E/DCkIOaJiALmAt8ppdLsbWBtJiUzly3m0T0bj8ZzJjkLgKb1PBnXpTGD2hiTuWyitWIqgCUPAQI3fwBOV3cm+zecJS0pmxvubI/oiT8ajcNSoT4CpdRlEfkR8ASeACYCT4vIu0qp9+xoX60iN9/ErtPJxpKMRxPYd8YI9/i6u9CvVRD3D27FwNbBtAjysv2km62z4dRmmPABBFxdqjsnK5/oX2Jp2r4ezTqUnNCk0Wgch4r0EYwHZgCtgS+B3kqpSyLihbHIjMM6AqUUJxIy2HjEWJVr6/FEMnILcHYSujYL4NGhbRjUNpguTQPsu2zixQOw9hVoPxa6Vmylz12rTpGdkUe/iWUvTKPRaByDirQIbgX+p5TaYL1TKZUpImWvbFJHSc7IZfPxBDYeMSZznU0xwj0tgrzMi7OE0K9V0PUTCcvPhUX3gYc/jH273DUGCslIzWHPb3G06Vmf+i3Kn2im0WjqPhVxBLOA84UbIuIJNFBKxSqlfrOXYTWF3HwTO08ls+mYMaxz39lUlDJmZPZvFcxDN7RiYOsQmgdV05C79a/DxX1w27fgE1KhU6J+jsWUr+gzoaWdjdNoNLWBijiCBUB/q+0C877yp6vWUpRSHI9PZ8MRo4N3+8kkMnMLcHESujUP4MnhbRnQJpiIJv72DfdUhNPbjcVmuk6D9mMqdErKxUwObDqnheU0Go2FijgCF6WURRNXKZUrInVKjCYxPYdNxxLMEg4JXLicDUDLYG8m9WjKwDYh9G0ZWLOm2Oekw+L7wb8pjP53hU/btvQ4zlpYTqPRWFERRxAvIuPNC8kgIhOABPuaZV9y8gvYGZtsTOY6Fs/+s5cB8Pd0ZUDrYMuSjDV6huXqF4x5A9N/Ao+KxfkvnrxsCMuNCdXCchqNxkJFHMEDwDci8j4gQBxwl12tsgOnEjNYfeAiG48msP1kItl5JlychB4t6vHXkW0Z2CaETk38ca4N4+mProboOdDvEQgdUKFTlFJsXXzMEJYbcfXhpRqNxnGoyISy40BfEfExb6fb3So78Ov+C/x7xSFahXhzW6/mDGwTTJ+WQfi41zK5pcwkWPoIhHSAoS9U+LTTB5I4e0QLy2k0mpJUqEYQkTFAOOBROBFKKfVPO9plcyb1aMq4Lo1pHOBZ3aZcGz//BTITYeoP4OpRoVOUyZCZ1sJyGo2mNCoyoewjwAu4AfgMmATssLNdNieoLiykse9HiFlktAQadanwaYXCciP+3FELy2k0mhJUpFbor5S6C0hWSr0M9APa2tcsTQlSz8LPT0HTXhD5RIVPKxSWC27mQ5seDexnn0ajqbVUxBFkm/9mikhjIA9oZD+TNCVQCpY+DAV5MPFjcK54jL9QWK7/xNZaWE6j0ZRKRWqU5SISALwJ/AEo4FN7GqUpRtRncOJ3GPN/EFRxbaAiwnIdtbCcRqMpnXIdgYg4Ab8ppVKAhSLyE+ChlEq9HsZpgIRjsOoFaD0celZO2mn36tNaWE6j0VyVckND5lXJZltt52gncB0pyIfF94GLO4x/v0KCcoVkpOawe81pWmthOY1GcxUq0kfwm4jcKjYX0NdclU3/g7M7Yex/wa9y3TIWYbnxWlhOo9GUT0Ucwf0YInM5InJZRNJE5LKd7dKc22Uoi3aaBJ1urdSphcJy4QMbE1C/BstkaDSaGkFFZhb7Xg9DNFbkZcGi+8E7BG56s9Knb1t6whCWGxNmB+M0Gk1doyITygaVtr/4QjUaG/LbK5BwGKYtAq/KjfYxhOUuaWE5jUZTYSoyfPRpq+8eQG9gJzDULhY5Oic3wLbZ0OseaD2sUqdqYTmNRlMVKhIaGme9LSLNgLftZZBDk50KSx6CwFYwovJSTleE5dpoYTmNRlNhqlJbnAE62NoQDbDiObh8FmauAjfvSp2qTIqtiwuF5ZrYyUCNRlMXqUgfwXsYs4nBGGXUFWOGscaWHFwOe76FQU9Ds8qvAnok6iKJZ7SwnEajqTwVaRFEW33PB75TSm22kz2OSfolWP64oSg66JlKn16QZ2L7Mi0sp9FoqkZFHMGPQLZSqgBARJxFxEsplWlf0xwEpWDZY8YaxBM/AZfKj/TZv+EsaYnZDJnaRQvLaTSaSlOhmcWA9WounsAa+5jjgOz6Go6sgOEvQf32lT49Nyuf6BVmYbkOWlhOo9FUnoo4Ag/r5SnN3/V0VVuQHAu/PgehA6HPg1XKYtfq02SnG8JyWgVEo9FUhYo4ggwR6V64ISI9gKyKZC4io0XksIgcE5HnSjk+XUTiRWS3+XNPxU2v5ZgKjKGiCNz8AThVvoNXC8tpNBpbUJE+gieABSJyDhCgITDlaieJiDOGcukIjCGnUSKyTCl1oFjS+UqpRypldV1g62w4tRkmfAABVZv8Fa2F5TQajQ2oyISyKBFpD7Qz7zqslMqrQN69gWNKqRMAIvI9MAEo7ggcj4sHYO0r0H4sdL2jSlmkXMwkRgvLaTQaG3DVeISIPAx4K6X2K6X2Az4i8lAF8m4CxFltnzHvK86tIrJXRH40z1ouzYb7RCRaRKLj4+MrcOkaTH4uLLoPPPxh7NuVWmPAGouw3E2hNjVPo9E4HhUJTN9rXqEMAKVUMnCvja6/HAhVSkUAq4EvSkuklPpEKdVTKdUzJCTERpeuJta/Dhf3wbh3wadqZbkYawjLdR3eDG9/dxsbqNFoHI2KOAJn60VpzLH/igx2PwtYv+E3Ne+zoJRKVErlmDc/A3pUIN/ay+ntxmIz3aZB+5uqlIW1sFy34VpYTqPRXDsVcQS/AvNFZJiIDAO+M++7GlFAGxEJExE34DZgmXUCEbFedms8cLBiZtdCctJh8f3g3xRG/bvK2cQdSOLs4RR63hSKm6cWltNoNNdORWqSZzFWKSsc6L4a4+29XJRS+SLyCLAScAbmKKViROSfQLRSahnwmIiMx5CuSAKmV74ItYTVLxjzBqb/BB5VG+qpTIotWlhOo9HYmIqMGjIBH5o/lUIp9QvwS7F9L1p9/xvwt8rmW+s4uhqi50C/RyB0QNWziTYLy83UwnIajcZ2VER9tA3wb6AjxsI0ACil9OD1ipCZBEsfgZAOMPSFKmdTkGdi21KzsFxPLSyn0WhsR0VeK+ditAbygRuAL4Gv7WlUnUEp+PkpyEyEWz4GV4+rn1MG+zcawnL9JrbSwnIajcamVMQReCqlfgNEKXVKKTULGGNfs+oI+xdCzGIY8pwhMV1FcrPyif5FC8tpNBr7UJHO4hwRcQKOmjt/zwI+9jWrDpB61mgNNO0NkU9cU1ZaWE6j0diTirQIHsdQG30MY5z/NOBuexpV61EKlj4MBXkw8SNwrvowz4zUHHb/FkfrHlpYTqPR2IcKaQ2Zv6YDM+xrTh0h6jM48TuM+S8EtbqmrKJ/icWUZ9LCchqNxm7oMYi2JuEYrHoBWg+HnjOvKauUi5kc2HiOjgMbE9BAC8tpNBr7oB2BLSnIh8X3gYs7jH+/yoJyhWxfdgInLSyn0WjsTEXURyMrsk+DoSN0dieM/S/4Nbp6+nK4dOoyx3ZeouswLSyn0WjsS0VaBO9VcJ9jc26XoSzaaRJ0uvWaslJKsWXRcTx8XOk2QgvLaTQa+1JmZ7GI9AP6AyEi8pTVIT8M7SBNIXlZsOh+8A6Bm9685uziDiZx9nAyA/7URgvLaTQau1NeLeOGMV/ABfC12n8ZmGRPo2odv70CCYdh2iLwurYJX8qk2GoWluukheU0Gs11oExHoJRaD6wXkXlKqVMA5ollPkqpy9fLwBrPyQ2wbTb0uhdaD7vm7I5GXyQhziws56r78jUajf2pSNzh3yLyAFCAscaAn4i8o5S69hhIbSc7FZY8BIGtYMTL15xdQb6J7cu0sJy9ycvL48yZM2RnZ1e3KRqNzfHw8KBp06a4urpW+JyKOIKOSqnLIjIVWAE8B+wEtCNY8RxcPgt/Xg1u3tecXczGs1xOyGbco120sJwdOXPmDL6+voSGhmrJDk2dQilFYmIiZ86cISwsrMLnVST24CoirsDNwDKlVB6gqmZmHeLgctjzLQz8CzTtec3Z5WblE/VzLE3a1aNZRy0sZ0+ys7MJCgrSTkBT5xARgoKCKt3arYgj+BiIBbyBDSLSAqPD2HFJvwTLHzcURQc9Y5Msd63RwnLXE32PNXWVqjzbFdEaehd412rXKRG5odJXqisoBcseM9YgnvgJuLhdc5YZqTnsXmMIyzUI1cJyGo3m+lKRmcUNRORzEVlh3u6II6uP7voajqyA4S9B/fY2yVILy2k0muqkIqGheRgL0Dc2bx8BnrCTPTWb5Fj49TkIHQh9HrRJlimXzMJyA7SwnOba8fExlgo5d+4ckyYZ0312797NL7/8Ut5ppTJr1izeeustm9pnD0ors6ZylOkIRKQwbBSslPoBMAEopfIxhpI6FqYCWPwgiBPc/AE42WaM//ZlJ3ByEXqOCbVJfhoNQOPGjfnxxx+BqjuC2oZ1mTWVo7w+gh1AdyBDRIIwjxQSkb5A6nWwrWaxdTac3gI3fwgBttH/uXTqMseiL9HzplAtLFdNvLw8hgPnbDv2oWNjP14aF37VdDfffDNxcXFkZ2fz+OOPc9999+Hj48ODDz7IL7/8QqNGjfjXv/7FM888w+nTp3n77bcZP3488+bNY/HixaSmpnL27FmmTZvGSy+9VCTv2NhYxo4dyx9//MGLL75IVlYWmzZt4m9/+xsHDx7Ex8eHv/71rwB06tSJn376idDQUF577TW++OIL6tevT7NmzejRowcAx48f5+GHHyY+Ph4vLy8+/fRT2rcvPTQaHx/PAw88wOnTpwF4++23iYyMZNasWZw+fZoTJ05w+vRpnnjiCR577DEAvvzyS9566y1EhIiICL766itiY2OZOXMmCQkJhISEMHfuXJo3b87Jkye54447SE9PZ8KECSXKvH//fubNm8eyZcvIzMzk+PHjTJw4kf/85z8AfP7557zxxhsEBATQpUsX3N3def/99yv5K9ctynutLex6fgpYBrQSkc0Yi9c/am/DahQXD8DaV6D9WOhyu02y1MJymjlz5rBz506io6N59913SUxMJCMjg6FDhxITE4Ovry//+Mc/WL16NYsXL+bFF1+0nLtjxw4WLlzI3r17WbBgAdHR0aVew83NjX/+859MmTKF3bt3M2XKlDLt2blzJ99//72lBREVFWU5dt999/Hee++xc+dO3nrrLR566KEy83n88cd58skniYqKYuHChdxzzz2WY4cOHWLlypXs2LGDl19+mby8PGJiYnj11VdZu3Yte/bs4Z133gHg0Ucf5e6772bv3r1MnTrV4jQef/xxHnzwQfbt20ejRmWr/O7evZv58+ezb98+5s+fT1xcHOfOneOVV15h27ZtbN68mUOHDpV5viNRXovAWmxuMfALhnPIAYYDe+1sW80gPxcW3Qce/jDunWteY6AQi7DcZC0sV51U5M3dXrz77rssXrwYgLi4OI4ePYqbmxujR48GoHPnzri7u+Pq6krnzp2JjY21nDtixAiCgoIAuOWWW9i0aRM9e17bfJaNGzcyceJEvLyMvqrx48cDkJ6ezpYtW5g8ebIlbU5OTpn5rFmzhgMHDli2L1++THp6OgBjxozB3d0dd3d36tevz8WLF1m7di2TJ08mODgYgMBAYx7N1q1bWbRoEQB33nknzzxjDNXevHkzCxcutOx/9tlnS7Vj2LBh+Pv7A9CxY0dOnTpFQkICgwcPtlxj8uTJHDlypDK3qU5SXg3kjCE6V7zmc6wezfWvw8V9cNt34B1skywLheV8gzzoNEgLyzki69atY82aNWzduhUvLy+GDBlCdnY2rq6ulnHgTk5OuLu7W77n5+dbzi8+VrwyY8ddXFwwmUyW7atNPjKZTAQEBLB79+4K5W8ymdi2bRseHh4ljhWWB8DZ2blImSpDRcprq2s5AuWFhs4rpf6plHq5tM91s7A6Ob3dWGym2zRof5PNsj260xCW6zO+pRaWc1BSU1OpV68eXl5eHDp0iG3btlXq/NWrV5OUlERWVhZLliwhMrLstaJ8fX1JS0uzbIeGhvLHH38A8Mcff3Dy5EkABg0axJIlS8jKyiItLY3ly5cD4OfnR1hYGAsWLACMsOaePXvKvN7IkSN5770rS5ZczYEMHTqUBQsWkJiYCEBSUhIA/fv35/vvvwfgm2++YeDAgQBERkYW2V8ZevXqxfr160lOTiY/P9/SsnB0KtJH4JjkpMPi+8G/KYz6t82yLcg3sX3pCYKa+tC2lxaWc1RGjx5Nfn4+HTp04LnnnqNv376VOr93797ceuutREREcOutt5YbFrrhhhs4cOAAXbt2Zf78+dx6660kJSURHh7O+++/T9u2bQHo3r07U6ZMoUuXLtx444306tXLksc333zD559/TpcuXQgPD2fp0qVlXu/dd98lOjqaiIgIOnbsyEcffVRuWcLDw3n++ecZPHgwXbp04amnjIj0e++9x9y5cy2dx4V9B++88w6zZ8+mc+fOnD17tsL3DKBJkyb8/e9/p3fv3kRGRhIaGmoJHzkyolTpskEiEqiUSrrO9lyVnj17qrI6xmzKT09C9FyY/jOE2m5lzr2/x7Fx/lHGPdqF5uFBNstXU3EOHjxIhw4dqtuMKjNv3jyio6MdfqRLVUlPT8fHx4f8/HwmTpzIzJkzmThxYnWbZVNKe8ZFZKdSqtQ3hjJbBDXRCVw3jq6G6DnQ/xGbOoHc7Hyif4mlSbsALSyn0VQTs2bNomvXrnTq1ImwsDBuvvnm6jap2tHDVYqTmQRLH4H6HeGGf9g0692rT5OVlke/ia216JmmykyfPp3p06dXtxm89tprln6DQiZPnszzzz9fTRZVjNowW/p6ox2BNUrBz09BZiJMXQCuJUc9VJXMy7nsWhNHq+5aWE5TN3j++edrfKWvqRh6yIo1+xdCzGIY8hw0irBp1tE/n6Qgz0TfCVpYTqPR1Cy0Iygk9azRGmjaGyKfsGnWKZcyidl4jnAtLKfRaGog2hGAERJa+jAU5MHEj8DZthEzLSyn0WhqMtoRAER9Bid+h5GvQlArm2ZdKCzXdXhzLSyn0WhqJNoRJByDVS9A6+HQc6bNs9+6+Dge3lpYTmMfYmNj6dSpU3WbcVWmT59ukYi+5557imgRaaofxx41VJAPi+8zRgeNf99mgnKFxB1I4swhLSyn0Vjz2WefVbcJmmLYtXYSkdHAOxgCdp8ppV4vI92twI9AL6XUdZg2bGbT/+DsTpg0F/zKlrOtCsqk2LL4mBaWq+mseA4u7LNtng07w42lPupFKGs9gscff5yffvoJT09Pli5dSoMGDTh+/DhTp04lIyODCRMm8Pbbb1sUPQspKCjgueeeY926deTk5PDwww9z//33l3n9N998kx9++IGcnBwmTpzIyy+/TGxsLDfeeCMDBgxgy5YtNGnShKVLl+Lp6cmxY8d44IEHiI+Px9nZmQULFtCyZUueeeYZVqxYgYjwj3/8gylTpqCU4tFHH2X16tU0a9YMN7cra3sPGTKEt956i549e15TeTW2w26hIRFxBmYDNwIdgdvN6x0XT+cLPA5st5ctpXJul6Es2mkSdLrF5tlrYTnN1ShrPYK+ffuyZ88eBg0axKeffgoYGvyPP/44+/bto2nTpqXm9/nnn+Pv709UVBRRUVF8+umnFkG54qxatYqjR4+yY8cOdu/ezc6dO9mwYQMAR48e5eGHHyYmJoaAgACLMNvUqVN5+OGH2bNnD1u2bKFRo0YsWrSI3bt3s2fPHtasWcPTTz/N+fPnWbx4MYcPH+bAgQN8+eWXbNmypVQ7rqW8GtthzxZBb+CYUuoEgIh8D0wAigcHXwHeAJ62oy1FycuCRfeDdwiMsf0sQy0sV4uowJu7vShrPYKxY8cC0KNHD1avXg0Y2vxLliwB4I477rCsLmbNqlWr2Lt3ryUWn5qaytGjRwkLCys17apVq+jWrRtg6O8cPXqU5s2bExYWRteuXS02xMbGkpaWxtmzZy2aPIUS05s2beL222/H2dmZBg0aMHjwYKKiotiwYYNlf+PGjRk6dGip9+BayquxHfZ0BE2AOKvtM0Af6wQi0h1oppT6WUTKdAQich9wH0Dz5jbodP3tFUg4DNMWgWe9a8+vGDEbz3E5IZuxj3ZBnLSUhKYkFVmPoLIa+kop3nvvPUaNGlWhtH/7299KhI5iY2NL6PhnZWVV2IbKci3l1diOaotZiIgT8F/gL1dLq5T6RCnVUynVMyQk5NoufHIDbJsNve6F1sOuLa9SMITlTtKkXQDNtbCcpgwqux5B3759LSGaQi3+4owaNYoPP/yQvLw8AI4cOUJGRkaZaefMmWOJu589e5ZLly6VeX1fX1+aNm1qeUvPyckhMzOTgQMHMn/+fAoKCoiPj2fDhg307t2bQYMGWfafP3+e33//vdzyVaW8GtthT0dwFmhmtd3UvK8QX6ATsE5EYoG+wDIRubb19sojOxWWPASBrWCEfdbW0cJymopQ2fUI3n77bf773/8SERHBsWPHStXQv+eee+jYsSPdu3enU6dO3H///WW+YY8cOZI77riDfv360blzZyZNmlRk8ZrS+Oqrr3j33XeJiIigf//+XLhwgYkTJxIREUGXLl0YOnQo//nPf2jYsCETJ06kTZs2dOzYkbvuuot+/fpV/OZUsLwaG6KUsssHI+x0AggD3IA9QHg56dcBPa+Wb48ePVSVWfSAUrMClIqLqnoe5ZCRmqM+emydWvHxXrvkr7ENBw4cqG4TKk1GRoYymUxKKaW+++47NX78+Gq2yL44WnltTWnPOBCtyqhX7dZHoJTKF5FHgJUYw0fnKKViROSfZoOW2evapXJwOez5FgY9DU3t0+iI/iXWLCxn29nJGs3OnTt55JFHUEoREBDAnDlzqtsku+Jo5a1u7DqPQCn1C/BLsX0vlpF2iD1twdnNmD086Bm7ZJ8an0nMhrN01MJyGjswcODActcJLot9+/Zx5513Ftnn7u7O9u3Xd7R2ZalqeTVVw3Gmu7YdZXzsxPalhrBcLy0sp6lBdO7c+aqLx2s0eqaTDbh06jJHtbCcRqOppWhHYAO0sJxGo6nNaEdwjRQKy/W8KVQLy2k0mlqJdgTXgDIpti45jm+gFpbTaDS1F+0IroFjOy8RfzqNPhO0sJymeli3bp1Fq2fZsmW8/vq1ayfNmzePc+fOVTpdbV9nwMfHB4Bz584xadKkarbm+qJrrypSkG9i29LjBDXRwnKamsH48eN57rnnKpS2PE2fqjqCzz77jI4dSwgM1zoaN25sEe5zFHRQu4pYhOUe0cJytZk3drzBoaRDNs2zfWB7nu39bLlpYmNjGT16ND169OCPP/4gPDycL7/8krfeeovly5eTlZVF//79+fjjjxGRIhr+CQkJ9OzZk9jY2CJ5zps3j+joaN5///1Srzl9+nQ8PDzYtWsXkZGR3HXXXTzwwANkZmbSqlUr5syZw2+//UZ0dDRTp07F09OTrVu38uabb5awaeHChSXS3XjjjRYbv/vuO/71r3+hlGLMmDG88cYbAGWuP1Aa8fHxPPDAA5w+fRowZCciIyOZNWsWp0+f5sSJE5w+fZonnniCxx57DMByD0WEiIgIvvrqK2JjY5k5cyYJCQmEhIQwd+5cmjdvzsmTJ7njjjtIT09nwoQJRX6bsWPHsn//fubNm8eyZcvIzMzk+PHjTJw4kf/85z+AIfv9xhtvEBAQQJcuXXB3dy/z3td0dIugCliE5doG0DxcC8tpqsbhw4d56KGHOHjwIH5+fnzwwQc88sgjREVFsX//frKysvjpp59ses0zZ86wZcsW/vvf/3LXXXfxxhtvsHfvXjp37szLL7/MpEmT6NmzJ9988w27d+/G09OzVJtKS1fIuXPnePbZZ1m7di27d+8mKirKIlZX1voDpfH444/z5JNPEhUVxcKFC7nnnnssxw4dOsTKlSvZsWMHL7/8Mnl5ecTExPDqq6+ydu1a9uzZwzvvvAPAo48+yt13383evXuZOnWqxWk8/vjjPPjgg+zbt49GjcpemGr37t3Mnz+fffv2MX/+fOLi4jh37hyvvPIK27ZtY/PmzRw6ZNuXieuNbhFUgd1r4gxhuYe0sFxt52pv7vakWbNmREZGAjBt2jTeffddwsLC+M9//kNmZiZJSUmEh4czbtw4m11z8uTJODs7k5qaSkpKCoMHDwbg7rvvZvLkyaWe8/vvv1fKpqioKIYMGUKhUvDUqVPZsGEDN998c5nrD5TGmjVrivQ5XL582aKWOmbMGNzd3XF3d6d+/fpcvHiRtWvXMnnyZIKDgwEIDDRe0rZu3cqiRYsAuPPOO3nmGUNdYPPmzRaF0zvvvJNnny39WRg2bJhF9K5jx46cOnWKhIQEBg8ebLnG5MmTOXLkSJllqeloR1BJMi/nsnv1aVp1D6FBmF91m6OpxRR/iRARHnroIaKjo2nWrBmzZs0iOzsbABcXF0wmE4BlX1Xw9vauVPrs7OwybaoKlVl/wGQysW3bNssiONYUXzOhqusYVORFzlbXqsno0FAlif4llnwtLKexAadPn2br1q0AfPvttwwYMACA4OBg0tPTi3RYhoaGsnPnTgCbdGT6+/tTr149Nm7cCBgS04WtA19fX4skdWGlX5pN1ums6d27N+vXrychIYGCggK+++47S96VYeTIkbz33nuW7atJZQwdOpQFCxaQmJgIQFJSEgD9+/e3rGnwzTffMHDgQAAiIyOL7K8MvXr1Yv369SQnJ5Ofn29pWdRWtCOoBBZhuchGWlhOc820a9eO2bNn06FDB5KTk3nwwQe599576dSpE6NGjaJXr16WtH/961/58MMP6datGwkJCTa5/hdffMHTTz9NREQEu3fv5sUXDT3I6dOn88ADD9C1a1fc3d3LtMk6nfUqZo0aNeL111/nhhtuoEuXLvTo0aNIZ2xFeffdd4mOjiYiIoKOHTvy0UcflZs+PDyc559/nsGDB9OlSxeeeuopAN577z3mzp1r6Twu7Dt45513mD17Np07d+bs2bPlZV2CJk2a8Pe//53evXsTGRlJaGhorV4zQQyZ6tpDz549VXR0dLVce9XnMZzcE8+0V/ppTaFazMGDB+nQoUO12mA9MkVTO0lPT8fHx4f8/HwmTpzIzJkzLWs6VzelPeMislMpVaoGv24RVJD402kcjbpIl2HNtBPQaDTMmjWLrl270qlTJ8LCwrj55pur26QqozuLK8jWxccMYbmRLarbFE0dIDQ01G6tgddee40FCxYU2Td58mSef/55u1zvWqlt9hby1ltvVbcJNkOHhipA3IEklr27m8hJrek6XCuM1nZqQmhIo7EnOjRkY6yF5ToPblrd5mg0Go3N0Y7gKhz7wywsNz5MC8tpNJo6ia7ZysEQljtBUBMf2vRuWN3maDQajV3QjqAcDmw6x+X4LPpNbIWTFpbTaDR1FO0IyiA3O5+on0/SuI0WltPYnkLte4CYmBiGDh1Ku3btaNWqFS+99JJFTmLevHmEhITQtWtXOnbsWK5I2/UmNDTUMrmtf//+1WyN5lrQw0fLYM9vhrDcTQ+10sJydZgL//oXOQdtqxzp3qE9Df/+9wqlzcrKYvz48Xz44YeMHDmSzMxMbr31Vt555x2efPJJAKZMmcL777/PpUuXCA8PZ/z48WVKN1cXW7ZsqW4TNNeAbhGUQublXHatOk2rbiE0DKu908Y1NZ9vv/2WyMhIRo4cCYCXlxfvv/8+b775Zom09evXp1WrVpw6darUvDIyMpg5cya9e/emW7duLF26FDBaFbfccgujR4+mTZs2FvVNgF9//ZXu3bvTpUsXhg0bBhgaPTfffDMRERH07duXvXv3ApCYmMjIkSMJDw/nnnvuwXroeWELZ926dQwZMoRJkybRvn17pk6dakn3yy+/0L59e3r06MFjjz1mUSHVVD+6RVAK0SsMYbk+E1pWtykaO1PRN3d7ERMTQ48ePYrsa9WqFVlZWaSkpBTZf+LECU6cOEHr1q1Lzeu1115j6NChzJkzh5SUFHr37s3w4cMBQ7Bt165duLu7065dOx599FE8PDy499572bBhA2FhYRaRtpdeeolu3bqxZMkS1q5dy1133cXu3bt5+eWXGTBgAC+++CI///wzn3/+eal27Nq1i5iYGBo3bkxkZCSbN2+mZ8+e3H///ZZr3X777dd45zS2RDuCYlgLy9VrWDnJXo3GHsyfP59Nmzbh7u7Oxx9/bNHAL86qVatYtmyZZcZrdna2ZXWv0jT1k5OTGTRoEGFhYcAV/f5NmzZZ1DSHDh1KYmIily9fZsOGDRZd/zFjxlCvXr1S7ejduzdNmxpzbrp27UpsbCw+Pj60bNnScq3bb7+dTz755JrvjcY2aEdQjO3LTuLkJPQaE1bdpmgcgI4dO7Jhw4Yi+06cOEFQUBABAQHAlT6Cq6GUYuHChbRr167I/u3bt19XTX1H0O+va+g+AiuKCMsFaGE5jf2ZOnUqmzZtYs2aNYDRefzYY4/x8ssvVzqvUaNG8d5771li8rt27So3fd++fdmwYQMnT54Eruj3Dxw40KLPv27dOoKDg/Hz82PQoEF8++23AKxYsYLk5OQK29auXTtOnDhhWWd5/vz5lSqbxr5oR2DF1iXHcfd2odsoLSynuT54enqybNkyXnvtNdq2bUtwcDCRkZFMnTq10nm98MIL5OXlERERQXh4OC+88EK56UNCQvjkk0+45ZZb6NKlC1OmTAEMVc2dO3cSERHBc889xxdffAEYfQcbNmwgPDycRYsW0bx5xXW3PD09+eCDDxg9ejQ9evTA19e3Vuv31zW06JyZuINJLHtHC8s5AjVZdG7JkiU89dRT/P7777RoUbdeSAr1+5VSPPzww7Rp08YyRFZjW7ToXBVQJsXWxVpYTlP93HzzzZw4caLOOQGATz/9lK5duxIeHk5qair3339/dZukMaM7i7kiLDdsegctLKep8cydO9ey3GIhkZGRzJ49u5osqhhPPvmkbgHUUBzeERQUFArLedNWC8tpagEzZsxgxowZ1W2Gpg7h8K+/BzYawnJ9b9bCchqNxjFxaEdgLSzXolNQdZuj0Wg01YJDO4JCYbl+t2hhOY1G47g4rCMoFJZrqYXlNBqNg2NXRyAio0XksIgcE5HnSjn+gIjsE5HdIrJJRDra0x5rdpqF5fpqYTlNHWf69On8+OOP1Xb9devW2U2murJli42NpVOnTnaxpSoMGTKEwnlRN910UwmhweuF3UYNiYgzMBsYAZwBokRkmVLqgFWyb5VSH5nTjwf+C4y2l02FpMZnsX/DWTpoYTmHZ+MPR0iIS7dpnsHNfBj4p7Y2zbM2s27dOnx8fPTiNVfhl19+qbZr27NF0Bs4ppQ6oZTKBb4HJlgnUEpdttr0Bq7LNOfty07g5CT01sJymmrkyy+/JCIigi5dunDnnXcSGxvL0KFDiYiIYNiwYRbl0OnTp/Pggw/St29fWrZsybp165g5cyYdOnRg+vTplvx8fHx48sknCQ8PZ9iwYcTHx5e45s6dOxk8eDA9evRg1KhRnD9/ntTUVNq1a8fhw4cBQxm0vJXQVq1aRb9+/ejevTuTJ08mPd1wpKGhobz00kt0796dzp07c+jQIWJjY/noo4/43//+R9euXdm4cSPLly+nT58+dOvWjeHDh3Px4kXAkLaYOXMmQ4YMoWXLlrz77ruWa77yyiu0a9eOAQMGcPvtt1sUVq9WtsL9Xbp0oUuXLleda1FQUMDTTz9Nr169iIiI4OOPPwbKX2chKiqK/v3706VLF3r37k1aWhrZ2dnMmDGDzp07061bN37//XfA0JK67bbb6NChAxMnTiQrK8ty7cIV32JjY+nQoQP33nsv4eHhjBw50pIuKiqKiIgIunbtytNPP2271o1Syi4fYBLwmdX2ncD7paR7GDgOxAFtysjrPiAaiG7evLm6Fi6duqzev/83tXXxsWvKR1N7OXDgQHWboPbv36/atGmj4uPjlVJKJSYmqrFjx6p58+YppZT6/PPP1YQJE5RSSt19991qypQpymQyqSVLlihfX1+1d+9eVVBQoLp376527dqllFIKUF9//bVSSqmXX35ZPfzww5bzFyxYoHJzc1W/fv3UpUuXlFJKff/992rGjBlKKaVWrVql+vbtq7777js1atSoMu2Oj49XAwcOVOnp6UoppV5//XX18ssvK6WUatGihXr33XeVUkrNnj1b/fnPf1ZKKfXSSy+pN99805JHUlKSMplMSimlPv30U/XUU09Z0vXr109lZ2er+Ph4FRgYqHJzc9WOHTtUly5dVFZWlrp8+bJq3bq1Jb+KlK1z585q/fr1Siml/vrXv6rw8PAyy/fxxx+rV155RSmlVHZ2turRo4c6ceKE+v3335Wfn5+Ki4tTBQUFqm/fvmrjxo0qJydHhYWFqR07diillEpNTVV5eXnqrbfeslz/4MGDqlmzZiorK0v93//9n2X/nj17lLOzs4qKirLcv/j4eHXy5Enl7Oxs+V0nT56svvrqK6WUUuHh4WrLli1KKaWeffbZMstS2jMORKsy6utqn1CmlJoNzBaRO4B/AHeXkuYT4BMwtIau5XpaWE5TE1i7di2TJ08mODgYMNYC2Lp1q0Xv/8477yyykti4ceMQETp37kyDBg3o3LkzAOHh4cTGxtK1a1ecnJwswnHTpk3jlltuKXLNw4cPs3//fkaMGAEYb7+NGjUCYMSIESxYsICHH36YPXv2lGn3tm3bOHDgAJGRkQDk5ubSr18/y/HCa/bo0cNSluKcOXOGKVOmcP78eXJzcy1rFICxzoG7uzvu7u7Ur1+fixcvsnnzZiZMmICHhwceHh6MGzeuRJ5llS0lJYWUlBQGDRpkua8rVqwos3yrVq1i7969ln6H1NRUjh49ipubW6nrLPj7+9OoUSN69eoFgJ+fH2Cs6fDoo48C0L59e1q0aMGRI0fYsGEDjz32GAARERFERESUakdYWBhdu3a13MvY2FhSUlJIS0uz3O877riDn376qcyyVAZ7OoKzQDOr7abmfWXxPfChHe0h7lAScQeSiJzUGnfPaveBGk2FKdT4d3JyKqL37+TkVKbef/Eh0UopwsPD2bp1a4m0JpOJgwcP4uXlRXJysqXCK45SihEjRvDdd9+Va2d56xA8+uijPPXUU4wfP55169Yxa9asEudfLY/S7CqtbJXtfFVK8d577zFq1Kgi+9etW1etazpYh5DsgT37CKKANiISJiJuwG3AMusEItLGanMMcNRexiiTYuui4/gEutNpcBN7XUajqRBDhw5lwYIFJCYmAsZaAP379+f7778H4JtvvmHgwIGVytNkMlneZL/99lsGDBhQ5Hi7du2Ij4+3VJZ5eXnExMQA8L///Y8OHTrw7bffMmPGDPLy8kq9Rt++fdm8eTPHjh0DjHWSjxw5Uq5dvr6+pKWlWbZTU1Np0sT4HyyUuC6PyMhIli9fTnZ2Nunp6aW+BZdVtoCAAAICAti0aROAZZ2Fshg1ahQffvihpfxHjhwhIyOjzPTt2rXj/PnzREVFAZCWlkZ+fn6RNR2OHDnC6dOnadeuXZE1Hfbv329ZD7oiBAQE4Ovry/bt2wEsz4otsNtrsVIqX0QeAVYCzsAcpVSMiPwTI1a1DHhERIYDeUAypYSFbIW1sJyLq7O9LqPRVIjw8HCef/55Bg8ejLOzM926deO9995jxowZvPnmm4SEhDB37txK5ent7c2OHTt49dVXqV+/fonFX9zc3Pjxxx957LHHSE1NJT8/nyeeeAIXFxc+++wzduzYga+vL4MGDeLVV18tdXGckJAQ5s2bx+23305OTg4Ar776Km3blj1Katy4cUyaNImlS5fy3nvvMWvWLCZPnky9evUYOnSoZWGcsujVqxfjx48nIiLCEhYrvpZBWWULDw9n7ty5zJw5ExFh5MiR5V7rnnvuITY2lu7du6OUIiQkhCVLlpSZ3s3Njfnz5/Poo4+SlZWFp6cna9as4aGHHuLBBx+kc+fOuLi4MG/ePNzd3XnwwQeZMWMGHTp0oEOHDiXWq74an3/+Offeey9OTk4MHjzYZms6OMx6BLH7Ejiw6Ryj7++sNYUcnJq8HsG14OPjYxnBU9coXMsgMzOTQYMG8cknn9C9e/fqNuu6U3gfAF5//XXOnz9fQokWKr8egcMEykM7BxPaObi6zdBoNFXgvvvu48CBA2RnZ3P33Xc7pBMA+Pnnn/n3v/9Nfn4+LVq0YN68eTbJ12EcgUZT17F1a6BPnz6W8E8hX331lWXE0vWkMK5uK1auXMmzzz5bZF9YWBiLFy+26XVszZQpUywjw2yJdgQah0QppYUGr0Jhp2RdZNSoUSVGBtUVqhLud1jROY3j4uHhQWJiYpX+YTSamoxSisTERDw8PCp1nm4RaByOpk2bcubMmVIlGDSa2o6Hh0eZ80DKQjsCjcPh6upaZDarRuPo6NCQRqPRODjaEWg0Go2Dox2BRqPRODi1bmaxiMQDp6p4ejCQYENzqhNdlppHXSkH6LLUVK6lLC2UUiGlHah1juBaEJHosqZY1zZ0WWoedaUcoMtSU7FXWXRoSKPRaBwc7Qg0Go3GwXE0R/BJdRtgQ3RZah51pRygy1JTsUtZHKqPQKPRaDQlcbQWgUaj0WiKoR2BRqPRODgO4whEZLSIHBaRYyLyXHXbU1VEZI6IXBKR/dVty7UgIs1E5HcROSAiMSLyeHXbVFVExENEdojIHnNZSq7xWMsQEWcR2SUiJRcIrkWISKyI7BOR3SJS+aUNawgiEiAiP4rIIRE5KCL9bJq/I/QRiIgzcAQYAZwBooDblVIHqtWwKiAig4B04EulVKfqtqeqiEgjoJFS6g8R8QV2AjfX0t9EAG+lVLqIuAKbgMeVUtuq2bQqIyJPAT0BP6XU2Oq2p6qISCzQUylVqyeUicgXwEal1Gci4gZ4KaVSbJW/o7QIegPHlFInlFK5wPfAhGq2qUoopTYASdVtx7WilDqvlPrD/D0NOAg0qV6rqoYyKFwezNX8qbVvWCLSFBgDfFbdtmhARPyBQcDnAEqpXFs6AXAcR9AEiLPaPkMtrXTqIiISCnQDau2SWOZQym7gErBaKVVrywK8DTwDmKrZDluggFUislNE7qtuY6pIGBAPzDWH6z4TEW9bXsBRHIGmhiIiPsBC4Aml1OXqtqeqKKUKlFJdgaZAbxGplWE7ERkLXFJK7axuW2zEAKVUd+BG4GFzaLW24QJ0Bz5USnUDMgCb9nM6iiM4CzSz2m5q3qepRszx9IXAN0qpRdVtjy0wN9l/B0ZXsylVJRIYb46tfw8MFZGvq9ekqqOUOmv+ewlYjBEmrm2cAc5YtTJ/xHAMNsNRHEEU0EZEwswdLbcBy6rZJofG3MH6OXBQKfXf6rbnWhCREBEJMH/3xBiUcKhajaoiSqm/KaWaKqVCMf5P1iqlplWzWVVCRLzNAxEwh1JGArVutJ1S6gIQJyLtzLuGATYdVOEQS1UqpfJF5BFgJeAMzFFKxVSzWVVCRL4DhgDBInIGeEkp9Xn1WlUlIoE7gX3m2DrA35VSv1SfSVWmEfCFeXSaE/CDUqpWD7usIzQAFhvvHLgA3yqlfq1ek6rMo8A35hfZE8AMW2buEMNHNRqNRlM2jhIa0mg0Gk0ZaEeg0Wg0Do52BBqNRuPgaEeg0Wg0Do52BBqNRuPgaEegcVhEJN38N1RE7rBx3n8vtr3FlvlrNLZEOwKNBkKBSjkCEbnaHJwijkAp1b+SNmk01w3tCDQaeB0YaNasf9IsIPemiESJyF4RuR9ARIaIyEYRWYZ5ZqeILDELmsUUipqJyOuApzm/b8z7ClsfYs57v1knf4pV3uusNOe/Mc++1mjsjkPMLNZorsJzwF8LdffNFXqqUqqXiLgDm0VklTltd6CTUuqkeXumUirJLC0RJSILlVLPicgjZhG64twCdAW6AMHmczaYj3UDwoFzwGaM2debbF1YjaY4ukWg0ZRkJHCXWfpiOxAEtDEf22HlBAAeE5E9wDYMYcM2lM8A4DuzWulFYD3QyyrvM0opE7AbI2Sl0dgd3SLQaEoiwKNKqZVFdooMwZAAtt4eDvRTSmWKyDrA4xqum2P1vQD9/6m5TugWgUYDaYCv1fZK4EGzTDYi0raMhUD8gWSzE2gP9LU6lld4fjE2AlPM/RAhGCtP7bBJKTSaKqLfODQa2AsUmEM884B3MMIyf5g7bOOBm0s571fgARE5CBzGCA8V8gmwV0T+UEpNtdq/GOgH7MFYPesZpdQFsyPRaKoFrT6q0Wg0Do4ODWk0Go2Dox2BRqPRODjaEWg0Go2Dox2BRqPRODjaEWg0Go2Dox2BRqPRODjaEWg0Go2D8//hcDyavhhSlwAAAABJRU5ErkJggg==",
Q
Quleaf 已提交
1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
      "text/plain": [
       "<Figure size 432x288 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    }
   ],
   "source": [
    "# Benchmarking different encoding methods\n",
    "x=[2*i for i in range(len(acc_list[0]))]\n",
    "for i in range(len(encoding_list)):\n",
    "    plt.plot(x,acc_list[i])\n",
    "plt.legend(encoding_list)\n",
    "plt.title(\"Benchmarking different encoding methods\")\n",
    "plt.xlabel(\"Iteration\")\n",
    "plt.ylabel(\"Test accuracy\")\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Quantum Classification on Built-In MNIST and Iris Datasets\n",
    "\n",
    "Paddle Quantum provides datasets commonly used in quantum classification tasks, and users can use the `paddle_quantum.dataset` module to get the encoding circuits or encoded states. There are four built-in datasets in Paddle Quantum at present, including MNIST, FashionMNIST, Iris and BreastCancer. We can easily accomplishing quantum classification using these quantum datasets.\n",
    "\n",
    "The first case is Iris. It has three types of labels and 50 samples of each type. There are only four features in Iris data, and it is very easy to fulfill its classification."
   ]
  },
  {
   "cell_type": "code",
Q
Quleaf 已提交
1177
   "execution_count": 29,
Q
Quleaf 已提交
1178 1179
   "metadata": {},
   "outputs": [
Q
Quleaf 已提交
1180 1181 1182 1183 1184 1185 1186 1187
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "/usr/local/Caskroom/miniconda/base/envs/pq_new/lib/python3.8/site-packages/paddle/fluid/dygraph/math_op_patch.py:276: UserWarning: The dtype of left and right variables are not the same, left dtype is paddle.float32, but right dtype is paddle.int64, the right dtype will convert to paddle.float32\n",
      "  warnings.warn(\n"
     ]
    },
Q
Quleaf 已提交
1188 1189 1190 1191
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
Q
Quleaf 已提交
1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
      "epoch: 0 iter: 0 loss: 0.1864 train acc: 0.7500 test acc: 0.9000\n",
      "epoch: 0 iter: 5 loss: 0.0841 train acc: 1.0000 test acc: 1.0000\n",
      "epoch: 0 iter: 10 loss: 0.0490 train acc: 1.0000 test acc: 1.0000\n",
      "epoch: 0 iter: 15 loss: 0.0562 train acc: 1.0000 test acc: 1.0000\n",
      "epoch: 1 iter: 0 loss: 0.0800 train acc: 1.0000 test acc: 1.0000\n",
      "epoch: 1 iter: 5 loss: 0.0554 train acc: 1.0000 test acc: 1.0000\n",
      "epoch: 1 iter: 10 loss: 0.0421 train acc: 1.0000 test acc: 1.0000\n",
      "epoch: 1 iter: 15 loss: 0.0454 train acc: 1.0000 test acc: 1.0000\n",
      "epoch: 2 iter: 0 loss: 0.0752 train acc: 1.0000 test acc: 1.0000\n",
      "epoch: 2 iter: 5 loss: 0.0569 train acc: 1.0000 test acc: 1.0000\n",
      "epoch: 2 iter: 10 loss: 0.0413 train acc: 1.0000 test acc: 1.0000\n",
      "epoch: 2 iter: 15 loss: 0.0436 train acc: 1.0000 test acc: 1.0000\n",
      "epoch: 3 iter: 0 loss: 0.0775 train acc: 1.0000 test acc: 1.0000\n",
      "epoch: 3 iter: 5 loss: 0.0597 train acc: 1.0000 test acc: 1.0000\n",
      "epoch: 3 iter: 10 loss: 0.0419 train acc: 1.0000 test acc: 1.0000\n",
      "epoch: 3 iter: 15 loss: 0.0425 train acc: 1.0000 test acc: 1.0000\n"
Q
Quleaf 已提交
1208 1209 1210 1211
     ]
    },
    {
     "data": {
Q
Quleaf 已提交
1212
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEWCAYAAAB8LwAVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAAm40lEQVR4nO3de5jcZXn/8fcnZyCbcMhJCBAErA38ODUgeChUqQWLgFiUk4K2olY80xZsL7RBgSr2pyhWURAoVKQIlFoQKQexCpWAgAYEAoIksrsJIZkNMJvs7t0/nmfCZDK7O8nuZGZnPq/r2mvne5x7Zme/9zyn76OIwMzMrNK4RgdgZmbNyQnCzMyqcoIwM7OqnCDMzKwqJwgzM6vKCcLMzKpyghjjJH1O0lV1PP9iSYflx5L0XUkvSPpFHZ5rjaRXj/Z5m8VYfH2S7pL0V42OY3NImicpJE3Iy7dIOrXRcY0lThBjgKSTJC3KF5jn8gf9jVviuSNir4i4Ky++EfhTYG5EHLQp56klkUXE1Ih4alNjzO/PM5JelHSjpO0rtp+Z37dVku6UtFXF9r0l3SpphaS6DQza3NdnoyMijoyIKxodx1jiBNHkJH0K+ApwHjAb2AX4BnBMA8LZFXg6Il4czZOWvuFt5rF7Ad8C3kN6f14ivT+l7a8FPg+8FZgB/CMwUHGadcC1wF9ubhxmLSki/NOkP8B0YA1w/BD7fA64qmz534FOYDVwN7BX2ba3AY8APcAy4My8fgbwQ2AVsBL4KTAub3saOJx08SwC/Tmmb5EuxjuUnf8AYDkwsYY4A/gI8ATw27J1ewwVa5Xzngf8W9ny7sBaoCMv7wG8CEyr4f3eI/1LDLnPvBznhLJ1dwF/VXaOn+T3fwXw/YrXXHp9lwMXA/+VX+P/AruX7ftW4LF8nm/kc/7VIDEdBNyT/37PAV8HJlU874fye70qP6/ytvHAl3OsvwXOKH995a8tL78feBR4AbgV2HWI9+pg4Of5OR8CDqt4z84FfpZf/4+BGWXb31h27LPAaWX/E1fmz9kzwD/wymd1PHBhfi1P5c9X1dcCnAb8T97/hfzajyx7/t1I/z89wH/n9+yqwV5rq/64BNHcDgGmADdswjG3AHsCs4AHgKvLtl0KfDAiOoC9gTvy+k8DS4GZpG/hnyH9Y60XEZeSLjL3RKoq+SDpH+5dZbu9B7gmItbVGOuxwOuA+VW2DRZrpb1IF59SnE+SEsRr8qru/HOdpCk1xjUS55IudtsBc4GvDbHvCaQSzXbAEuALAJJmANcBZwM7kBLF64c4Tz/wSVKiPwR4C/DXFfscBRwI7EP6m/1ZXv8B4EhgP1KCP3awJ5F0DOmzcRzps/JT4HuD7LsTKfl9HtgeOBP4gaSZZbudBLyP9FmdlPdB0q6kz/HX8vPsBzyYj/kaKUm8GjgUeG8+R+m1HAXsDywA/mKw15K9jvTezgC+CFwqSXnbvwG/IL3/nyN9ttuOE0Rz2wFYERF9tR4QEZdFRE9E9JI+2PtKmp43rwPmS5oWES9ExANl619F+ja4LiJ+Gvlr1DCuAE4BkDQeOBH411pjBc6PiJUR8XKVbYPFWmkq6Vt2udVAR358LXAJ6dvzjaUkIekqSR/dhFhrtY5UFbdjRBQj4n+G2PeGiPhF/vteTboQQio9LY6I6/O2i0ilwqoi4v6IuDci+iLiaVLp7tCK3S6IiFUR8TvgzrLnehfw1YhYGhEvABcMEe+HSH+zR3Nc5wH75Qt6pVOAmyPi5ogYiIjbgEX5tZV8NyIez3//a8tiOgn474j4Xv48Ph8RD+bP2AnA2fkz/jSp9FO6eL8L+EpEPBsRK4Hzh3gtAM9ExLcjop/0WX4VMFvSLqRkek5ErM1/w5uGOVdLcoJobs8DM2qto5c0XtIFkp6UVCBVD0H6hgTwTtI/6DOSfiLpkLz+S6RvsD+W9JSks2qM7z9IF/HdSI3XqyNiU3o3PTvEtsFirbQGmFaxbhrQI+kPSFUVFwIfJVWf3Shpa9I37cFKJSPxt4CAX+QeYO8fYt/yi/5LpGQHsCNl701O1ksHO4mk10j6oaTO/Hc/j1f+5pv0XAz9N9kV+Gpu7F9Fej8F7DTIvseX9s37v5F0ER4upp2BJ6uccwYwkVS1VPJM2fNXvpby/apZ//wR8VJ+ODWfZ2XZOhj6fWlZThDN7R6glyGK/RVOIjVeH04qhs/L6wUQEfdFxDGkIv2NpG9t5G9jn46IVwNHA5+S9Jbhniwiivkcp5C+xW1K6QEqqrEqzl011ioWA/uWFnI30snA48AEUr20ImIAOJVUHfNL4NGIWLyJ8UJqzwDYumzdnLK4OyPiAxGxI/BB4BuS9tjE53iOVD0FpO7F5ctV/AvwG2DPiJhGqgbSEPsP+lyki/NgniVV+21b9rNVRPx8kH3/tWLfbSJiqBJK+bG7V1m/gldKaCW7kNqoSq9l54ptm+M5YPv8RaJkqPelZTlBNLGIWA2cA1ws6VhJW0uaKOlISV+sckgHKaE8T7qAnVfaIGmSpJMlTc9tBAVybx5JR0naI1+IVpMuopU9fQZzJanB72g2PUFUNVSsVVwNvF3SmyRtAywEro+IHtJF8wnSRXo66dvnbaT2iTWl+uY8vmMKqR4cSVMkTa72ZBGxnHRBOiWX2N5P2cVM0vGSShfcF0hJsNb3suS/gP+X/+YTSI2tc4bYv4P0Hq3JvbY+vAnPdS3wcUk7SdoW+Lsh9v0mcHbuOYak6ZKOH2Tfq0h/lz/L79MUSYeVvTdDuRo4XNK7JE2QtIOk/XJV0LXAFyR15KqtT+XnKr2Wj0maK2k7oNaS8AYi4hlSddjn8mfxEODtm3Ousc4JoslFxJdJ/wT/QOq58Sypp8mNVXa/klSsXkbqAXRvxfb3AE/naogPASfn9XuSemqsIZVavhERd9YY389IF8AH8j/WaBks1srnX5y3X01qjO4gN9DmC8pRwLakKotlpGqOPyI1yH4+n2ZX4GVSaYT8+LEhYvsA8DekRLwXqbdNyYHA/0paQ6q3/nhs4tiHiFgBHE9qOH2e1Ii/iJT8qzmTVHrsAb4NfH8Tnu7bpEb1h0klq5uBPtKXhMq4bgD+Cbgm/11+TWrgrvYaniWVZj/DK5/bv6GGa05uJ3kbqfPESlIDdamU+FFSKe4pUi+kfwMuK3stt5I6LTwAXD/ccw3hZFI15POkz8n3Gfz9b1mlrm5mm03SHaSupt9pdCytSNI4UhvEybUm7hE815HANyOiWsNz25L0feA3EfHZRseyJbkEYSMi6UDSt/FN+dZqw8hVM9vmqq5Sm0JliXA0nmcrSW/LVTk7AZ9l07pVtyRJB0raXdI4SUeQSkM3NjisLc4JwjabpCtIVVOfyHX+NnoOIVWLrSDVfx87SHfgkRJpLMYL5MZ7UrtXu5tDGuezhtTN+MMR8cuGRtQArmIyM7OqXIIwM7OqNvsmac1mxowZMW/evEaHYWY2ptx///0rImJmtW0tkyDmzZvHokWLGh2GmdmYImnQ7umuYjIzs6qcIMzMrConCDMzq8oJwszMqnKCMDOzquqWICRdJqlb0q8H2S5JF0laIulhSQeUbTtV0hP559R6xWhmZoOrZwnicuCIIbYfSbqL6J7A6aR72iNpe9L9YF5Hmmv3s/nWvWZmtgXVbRxERNwtad4QuxwDXJlny7o335jsVcBhwG15ykAk3UZKNFXnvm1GP39yBfc++XyjwzCzNjFn+lac9LrNnR9pcI0cKLcTG07jtzSvG2z9RiSdTip9sMsuo//mbK6F//kIv+nsQbXO6WVmNgL77bxtyyWIEYuIS0gT0rNgwYKmuetgZ6HIew7elXOP3bvRoZiZbbZG9mJaxobzvM7N6wZbPyYU1/Wz6qV1zJ5WdcZKM7Mxo5EJ4ibgvbk308HA6oh4jjRl4FslbZcbp9+a140Jy3vSrISzpk1pcCRmZiNTtyomSd8jNTjPkLSU1DNpIkBEfJM09+3bgCXAS8D78raVks4F7sunWlhqsB4LugpFAOY4QZjZGFfPXkwnDrM9gI8Msu0yXpmIfEzpzAlithOEmY1xHkk9yroKqYrJbRBmNtY5QYyy7kKRSRPGMX2riY0OxcxsRJwgRllnocicaVOQB0GY2RjnBDHKugpFVy+ZWUtwghhl3YVed3E1s5bgBDHKunIVk5nZWOcEMYp6iut4cW2/q5jMrCU4QYyiV7q4ugRhZmOfE8Qo6s6D5GZ1OEGY2djnBDGKSqOo50x3gjCzsc8JYhSVqphmdbgNwszGPieIUdRVKNIxeQLbTB7T02yYmQFOEKOqu6fILPdgMrMW4QQxijpXF93+YGYtwwliFHUVepntHkxm1iKcIEZJROQqJicIM2sNThCjZOWLa1nXH8xxG4SZtQgniFHiUdRm1mqcIEZJV08eRe0EYWYtwglilHSvn4vaVUxm1hqcIEZJ5+rSKGqXIMysNThBjJKuniI7bDOJSRP8lppZa/DVbJR0F9zF1cxaixPEKOksFN3F1cxaihPEKOkq9LqLq5m1FCeIUdDXP8CKNb2uYjKzluIEMQpWrFlLhLu4mllrcYIYBetnknMJwsxaiBPEKOhaP0jOCcLMWocTxCgojaL2ZEFm1kqcIEZBZ6HI+HFixjZOEGbWOuqaICQdIekxSUsknVVl+66Sbpf0sKS7JM0t2/ZFSYslPSrpIkmqZ6wj0VXoZVbHZMaNa9oQzcw2Wd0ShKTxwMXAkcB84ERJ8yt2uxC4MiL2ARYC5+djXw+8AdgH2Bs4EDi0XrGOVJdHUZtZC6pnCeIgYElEPBURa4FrgGMq9pkP3JEf31m2PYApwCRgMjAR6KpjrCPSXehldoerl8ystdQzQewEPFu2vDSvK/cQcFx+/A6gQ9IOEXEPKWE8l39ujYhHK59A0umSFklatHz58lF/AbXqLBSZM90lCDNrLY1upD4TOFTSL0lVSMuAfkl7AH8IzCUllTdLelPlwRFxSUQsiIgFM2fO3JJxr1dc18/ql9e5i6uZtZwJdTz3MmDnsuW5ed16EfF7cglC0lTgnRGxStIHgHsjYk3edgtwCPDTOsa7WboLpXkgXMVkZq2lniWI+4A9Je0maRJwAnBT+Q6SZkgqxXA2cFl+/DtSyWKCpImk0sVGVUzNYP0oalcxmVmLqVuCiIg+4AzgVtLF/dqIWCxpoaSj826HAY9JehyYDXwhr78OeBL4Famd4qGI+M96xToSHkVtZq2qnlVMRMTNwM0V684pe3wdKRlUHtcPfLCesY2W9QnCU42aWYtpdCP1mNfd08vkCeOYtlVdc62Z2RbnBDFCnatTF9cmHuhtZrZZnCBGqKtQdPWSmbUkJ4gR6u7p9V1czawlOUGMQETQubroHkxm1pKcIEagp7ePl9f1eyY5M2tJThAj4ImCzKyVOUGMQFe+zYarmMysFTlBjEDn6nybDScIM2tBThAj0NXjKiYza11OECPQXeilY8oEtp7kUdRm1nqcIEagq+AurmbWupwgRqCzUHT7g5m1rGEThKTxWyKQsai74FHUZta6ailBPCHpS5Lm1z2aMWRgIOjucRWTmbWuWhLEvsDjwHck3SvpdEnT6hxX01v50lrW9YermMysZQ2bICKiJyK+HRGvB/4O+CzwnKQrJO1R9wib1CszybmKycxaU01tEJKOlnQD8BXgy8Crgf+kYra4dtKdR1HPcgnCzFpULR34nwDuBL4UET8vW3+dpD+uT1jNz3NRm1mrqyVB7BMRa6ptiIiPjXI8Y0Zn6UZ9Ha5iMrPWVEsj9cWSti0tSNpO0mX1C2ls6Cr0MmPqJCaO91ASM2tNtVzd9omIVaWFiHgB2L9uEY0R3YUiszzVqJm1sFoSxDhJ25UWJG1PbVVTLa2zUGTOdCcIM2tdtVzovwzcI+nfAQF/AXyhrlGNAV2FXvaZO73RYZiZ1c2wCSIirpR0P/AnedVxEfFIfcNqbuv6B3j+xV5XMZlZS6upqigiFktaDkwBkLRLRPyurpE1sRVreolwF1cza221DJQ7WtITwG+BnwBPA7fUOa6mtn4muenu4mpmrauWRupzgYOBxyNiN+AtwL11jarJleaidhWTmbWyWhLEuoh4ntSbaVxE3AksqHNcTa27x6Oozaz11dIGsUrSVOBu4GpJ3cCL9Q2ruXWuLjJhnNhhm0mNDsXMrG5qKUEcA7wEfBL4EfAk8PZaTi7pCEmPSVoi6awq23eVdLukhyXdJWlu2bZdJP1Y0qOSHpE0r6ZXtAV0FXqZ1TGZcePU6FDMzOpmyASRZ5P7YUQMRERfRFwRERflKqch5WMvBo4E5gMnVpl06ELgyojYB1gInF+27UrSDQL/EDgI6K75VdVZd0/Rd3E1s5Y3ZIKIiH5gQNLmjAg7CFgSEU9FxFrgGlJppNx84I78+M7S9pxIJkTEbTmONRHx0mbEUBddhaLngTCzlldLFdMa4FeSLpV0UemnhuN2Ap4tW16a15V7CDguP34H0CFpB+A1pLaP6yX9Mk95utHc2Hl2u0WSFi1fvryGkEZH5+qiZ5Izs5ZXSyP19fmnHs4Evi7pNFIj+DKgP8f1JtJNAX8HfB84Dbi0/OCIuAS4BGDBggVRpxg38PLafgrFPlcxmVnLq+VWG1ds5rmXATuXLc/N68rP/XtyCSL3lHpnRKyStBR4MCKeyttuJI3F2CBBNIK7uJpZuxg2QUj6LbDRt/OIePUwh94H7ClpN1JiOAE4qeLcM4CVETEAnA1cVnbstpJmRsRy4M3AouFi3RJKo6jdBmFmra6WKqbyQXFTgOOB7Yc7KCL6JJ0B3AqMBy7L93RaCCyKiJuAw4DzJQWpiukj+dh+SWcCt0sScD/w7dpfVv109aRR1G6DMLNWV0sVU2WX1q/ku7ueU8OxNwM3V6w7p+zxdcB1gxx7G7DPcM+xpXWXphp1gjCzFldLFdMBZYvjSCWKtp0wqKtQZMrEcUyb0rZvgZm1iVonDCrpI93V9V31Caf5dRZ6mTNtCqnmy8ysddVSxfQnw+3TTroKHkVtZu2hlvkgzpO0bdnydpI+X9eomlh3oegurmbWFmoZSX1kRKwqLUTEC8Db6hZRE4sIOgtFZne4i6uZtb5aEsR4SeuviJK2AtryClko9lFcN8Cc6S5BmFnrq6WR+mrSeITv5uX3AZs7unpMcxdXM2sntTRS/5Okh4DD86pzI+LW+obVnEpTjbqKyczaQS3jIHYD7oqIH+XlrSTNi4in6x1cs+nMJQhXMZlZO6ilDeLfgYGy5f68ru10laqYOpwgzKz11ZIgJuQJfwDIj9tyMubuQpFpUyaw1aSNpqYwM2s5tSSI5ZKOLi1IOgZYUb+Qmlenx0CYWRuppRfTh4CrJX0dEGmWuPfWNaom1VXodfuDmbWNWnoxPQkcnCf0ISLW1D2qJtVdKLL7zBmNDsPMbIuo6Zakkv4c2AuYUrpJXUQsrGNcTWdgIOju6fVEQWbWNmq5F9M3gXcDHyVVMR0P7FrnuJrO8y+upW8gXMVkZm2jlkbq10fEe4EXIuIfgUOA19Q3rObjLq5m1m5qSRAv598vSdoRWAe8qn4hNafuHs9FbWbtpZY2iB/m231/CXgACJpkfugtqXN1vs2Gu7maWZuopRfTufnhDyT9EJgSEavrG1bz6SoUkWCm78NkZm1ikyZWjoheoLdOsTS17p4iO2wzmYnja6mVMzMb+3y1q1FXwV1czay9OEHUqHN1kTlufzCzNlLL7b4PqLJ6NfBMRPSNfkjNqbunyL47b9voMMzMtpha2iC+ARwAPEwaKLc3sBiYLunDEfHjOsbXFNb1D7BizVpXMZlZW6mliun3wP4RsSAi/gjYH3gK+FPgi/UMrlks73EXVzNrP7UkiNdExOLSQkQ8Arw2Ip6qX1jNZf1Mck4QZtZGaqliWizpX4Br8vK7gUckTSaNqm553aXbbLiKyczaSC0liNOAJcAn8s9Ted064E/qE1Zz6Sq4isnM2k8tI6lfBr6cfyq1xdwQnYUiE8eL7bduy5lWzaxN1dLN9Q3A50i3+F6/f0S8un5hNZeuQpFZHVMYN06NDsXMbIuppYrpUuCfgTcCB5b9DEvSEZIek7RE0llVtu8q6XZJD0u6S9Lciu3TJC3N0502THeh1+0PZtZ2akkQqyPilojojojnSz/DHSRpPHAxcCQwHzhR0vyK3S4EroyIfYCFwPkV288F7q4hxrrqKhSZ7XkgzKzN1JIg7pT0JUmHSDqg9FPDcQcBSyLiqYhYS+oFdUzFPvOBO0rPU75d0h8Bs4GGD8TrLBQ9k5yZtZ1aurm+Lv9eULYugDcPc9xOwLNly0vLzlXyEHAc8FXgHUCHpB2AF0iN4qcAhw/2BJJOB04H2GWXXYYJZ/O8tLaPnmKfq5jMrO3U0oupnl1ZzwS+Luk0UlXSMqAf+Gvg5ohYKg3eMBwRlwCXACxYsCDqEWB3qYurq5jMrM0MmiAknRIRV0n6VLXtEfHPw5x7GbBz2fLcvK78HL8nlSCQNBV4Z0SsknQI8CZJfw1MBSZJWhMRGzV011tpFLXHQJhZuxmqBLFN/t1RZVst39bvA/aUtBspMZwAnFS+g6QZwMqIGADOBi4DiIiTy/Y5DVjQiOQAqYEaYM50VzGZWXsZNEFExLfyw/+OiJ+Vb8tjI4YUEX2SzgBuBcYDl0XEYkkLgUURcRNwGHC+pCBVMX1k815G/ZSqmGa5BGFmbaaWRuqvkW73Pdy6jUTEzcDNFevOKXt8HXDdMOe4HLi8hjjroqtQZKuJ4+mYvEmzs5qZjXlDtUEcArwemFnRDjGNVCJoC6UurkM1lpuZtaKhvhZPIjUQT2DDdogC8Bf1DKqZdBd6mdXh9gczaz9DtUH8BPiJpMsj4hkASeOAqRFR2FIBNlpXT5F9527b6DDMzLa4WkZSn5/vibQN8GvSXBB/U+e4mkJE0Lm66KlGzawt1ZIg5ucSw7HALcBuwHvqGVSzKLzcR2/fgMdAmFlbqiVBTJQ0kZQgboqIddQ2DmLM6+rxIDkza1+1JIhvAU+TBs7dLWlXUkN1y+vyKGoza2O13IvpIuCislXPSGqLqUY7V+dR1E4QZtaGhi1BSJot6VJJt+Tl+cCpdY+sCXT3lEZRu5HazNpPLVVMl5Nul7FjXn4c+ESd4mkqXYUi07eayJSJbTMu0MxsvUEThKRS9dOMiLgWGIB0jyXSLblbnru4mlk7G6oE8Yv8+8U8iU8ASDoYWF3vwJpBV0+vG6jNrG0N1UhduvnQp4CbgN0l/QyYSZvcaqO7UGTPWTMaHYaZWUMMlSDKb9J3A+murAJ6SdOAPlzn2BpqYCDo7ul1FZOZta2hEsR40s36Km9junX9wmkeK17spX8g3MXVzNrWUAniuYhYuMUiaTKeKMjM2t1QjdRtPQGCR1GbWbsbKkG8ZYtF0YQ61ycIt0GYWXsaNEFExMotGUiz6Sr0IsHMqU4QZtaeahlJ3Za6C0VmTJ3MhPF+i8ysPfnqN4iugkdRm1l7c4IYRGehl9kdbqA2s/blBDGI7kKR2dOdIMysfTlBVLG2b4DnX1zrEoSZtTUniCq6e9zF1czMCaKKrjyK2lVMZtbOnCCq6C4NknMVk5m1MSeIKro8itrMzAmims5CLxPHi+22ntToUMzMGsYJooruQpFZHVMYN66t71doZm2urglC0hGSHpO0RNJZVbbvKul2SQ9LukvS3Lx+P0n3SFqct727nnFW6urxKGozs7olCEnjgYuBI4H5wImS5lfsdiFwZUTsAywEzs/rXwLeGxF7AUcAX5G0bb1irdS5uujbfJtZ26tnCeIgYElEPBURa4FrgGMq9pkP3JEf31naHhGPR8QT+fHvgW7SXNhbRHeh1wnCzNpePRPETsCzZctL87pyDwHH5cfvADok7VC+g6SDgEnAk5VPIOl0SYskLVq+fPmoBP1ibx89vX1OEGbW9hrdSH0mcKikXwKHAsuA/tJGSa8C/hV4X0QMVB4cEZdExIKIWDBz5ugUMLp78iA5t0GYWZsbak7qkVoG7Fy2PDevWy9XHx0HIGkq8M6IWJWXpwH/Bfx9RNxbxzg30LnaU42amUF9SxD3AXtK2k3SJOAE4KbyHSTNkFSK4Wzgsrx+EnADqQH7ujrGuJFX7sPkBGFm7a1uCSIi+oAzgFuBR4FrI2KxpIWSjs67HQY8JulxYDbwhbz+XcAfA6dJejD/7FevWMt5FLWZWVLPKiYi4mbg5op155Q9vg7YqIQQEVcBV9UztsF0FXrZetJ4pk6u61tjZtb0Gt1I3XQ6C0XmTJuC5FHUZtbenCAqdBeKzHL1kpmZE0SlLg+SMzMDnCA2EBF0FnybDTMzcILYwOqX17G2b8AJwswMJ4gNrJ9q1G0QZmZOEOVeGQPhEoSZmRNEmc6cIOY4QZiZOUGU684JYmaHq5jMzJwgynQVetl264lMmTi+0aGYmTWcE0SZzkKR2R2uXjIzAyeIDXQXisye7gRhZgZOEBvoKvQy2+0PZmaAE8R6/QPB8jW+zYaZWYkTRPb8ml76B8KD5MzMMieI7JVR1C5BmJmBE8R6HkVtZrYhJ4is0wnCzGwDThBZd6HIOMGMqZMaHYqZWVNwgsi6Cr3MmDqZCeP9lpiZgRPEel09nijIzKycE0TWubroLq5mZmWcILLuHg+SMzMr5wQB9Pb1s/LFtU4QZmZlnCCAbk81ama2EScIoLvHYyDMzCo5QeDbbJiZVeMEgW+zYWZWjRME6TYbk8aPY7utJzY6FDOzpuEEQWqknjVtMpIaHYqZWdNwgiBVMbl6ycxsQ3VNEJKOkPSYpCWSzqqyfVdJt0t6WNJdkuaWbTtV0hP559R6xtlZ8ChqM7NKdUsQksYDFwNHAvOBEyXNr9jtQuDKiNgHWAicn4/dHvgs8DrgIOCzkrarV6zdBY+iNjOrVM8SxEHAkoh4KiLWAtcAx1TsMx+4Iz++s2z7nwG3RcTKiHgBuA04oh5BruntY01vnxOEmVmFeiaInYBny5aX5nXlHgKOy4/fAXRI2qHGY5F0uqRFkhYtX758s4Jc2zfA2/fdkb12nLZZx5uZtapGN1KfCRwq6ZfAocAyoL/WgyPikohYEBELZs6cuVkBbL/NJL524v68ac/NO97MrFVNqOO5lwE7ly3PzevWi4jfk0sQkqYC74yIVZKWAYdVHHtXHWM1M7MK9SxB3AfsKWk3SZOAE4CbyneQNENSKYazgcvy41uBt0raLjdOvzWvMzOzLaRuCSIi+oAzSBf2R4FrI2KxpIWSjs67HQY8JulxYDbwhXzsSuBcUpK5D1iY15mZ2RaiiGh0DKNiwYIFsWjRokaHYWY2pki6PyIWVNvW6EZqMzNrUk4QZmZWlROEmZlV5QRhZmZVtUwjtaTlwDMjOMUMYMUohVMPzR4fNH+MzR4fOMbR0OzxQXPFuGtEVB0p3DIJYqQkLRqsJb8ZNHt80PwxNnt84BhHQ7PHB2MjRnAVk5mZDcIJwszMqnKCeMUljQ5gGM0eHzR/jM0eHzjG0dDs8cHYiNFtEGZmVp1LEGZmVpUThJmZVdX2CULSEZIek7RE0lmNjqeSpJ0l3SnpEUmLJX280TFVI2m8pF9K+mGjY6lG0raSrpP0G0mPSjqk0TGVk/TJ/Pf9taTvSWr4HLiSLpPULenXZeu2l3SbpCfy77rNFT+CGL+U/84PS7pB0rYNDLFqjGXbPi0pJM1oRGzDaesEIWk8cDFwJGl+7BMlzW9sVBvpAz4dEfOBg4GPNGGMAB8n3da9WX0V+FFEvBbYlyaKVdJOwMeABRGxNzCeNH9Ko13OxnPBnwXcHhF7Arfn5Ua6nI1jvA3YOyL2AR4nzTXTSJezcYxI2pk0183vtnRAtWrrBAEcBCyJiKciYi1wDXBMg2PaQEQ8FxEP5Mc9pAvbRvNzN5KkucCfA99pdCzVSJoO/DFwKUBErI2IVQ0NamMTgK0kTQC2Bn7f4HiIiLuBynlYjgGuyI+vAI7dkjFVqhZjRPw4z0cDcC9pRsqGGeR9BPj/wN8CTdtTqN0TxE7As2XLS2myi285SfOA/YH/bXAolb5C+qAPNDiOwewGLAe+m6vBviNpm0YHVRIRy4ALSd8knwNWR8SPGxvVoGZHxHP5cSdpoq9m9n7glkYHUUnSMcCyiHio0bEMpd0TxJiR5+z+AfCJiCg0Op4SSUcB3RFxf6NjGcIE4ADgXyJif+BFGl81sl6uxz+GlMh2BLaRdEpjoxpepD7yTfvtV9Lfk6por250LOUkbQ18Bjin0bEMp90TxDJg57LluXldU5E0kZQcro6I6xsdT4U3AEdLeppURfdmSVc1NqSNLAWWRkSp5HUdKWE0i8OB30bE8ohYB1wPvL7BMQ2mS9KrAPLv7gbHU5Wk04CjgJOj+QZ77U76MvBQ/r+ZCzwgaU5Do6qi3RPEfcCeknaTNInUMHhTg2PagCSR6s4fjYh/bnQ8lSLi7IiYGxHzSO/fHRHRVN9+I6ITeFbSH+RVbwEeaWBIlX4HHCxp6/z3fgtN1Ihe4Sbg1Pz4VOA/GhhLVZKOIFV5Hh0RLzU6nkoR8auImBUR8/L/zVLggPw5bSptnSByQ9YZwK2kf8hrI2JxY6PayBuA95C+mT+Yf97W6KDGoI8CV0t6GNgPOK+x4bwil2yuAx4AfkX6v2z4rRgkfQ+4B/gDSUsl/SVwAfCnkp4glXwuaMIYvw50ALfl/5dvNmGMY4JvtWFmZlW1dQnCzMwG5wRhZmZVOUGYmVlVThBmZlaVE4SZmVXlBGFWhaQ1+fc8SSeN8rk/U7H889E8v9locYIwG9o8YJMSRL7h3lA2SBAR0ayjpq3NOUGYDe0C4E15wNUn87wXX5J0X55v4IMAkg6T9FNJN5FHaUu6UdL9eZ6H0/O6C0h3bX1Q0tV5Xam0onzuX0v6laR3l537rrL5LK7OI67N6mq4bzpm7e4s4MyIOAogX+hXR8SBkiYDP5NUuvPqAaR5CH6bl98fESslbQXcJ+kHEXGWpDMiYr8qz3UcaZT3vsCMfMzdedv+wF6k24D/jDTC/n9G+8WalXMJwmzTvBV4r6QHSbdd3wHYM2/7RVlyAPiYpIdIcxLsXLbfYN4IfC8i+iOiC/gJcGDZuZdGxADwIKnqy6yuXIIw2zQCPhoRt26wUjqMdBvx8uXDgUMi4iVJdwEjmUa0t+xxP/7ftS3AJQizofWQbvxWcivw4XwLdiS9ZpDJh6YDL+Tk8FrSdLEl60rHV/gp8O7czjGTNAveL0blVZhtBn8LMRvaw0B/riq6nDS39TzS/ftFmqnu2CrH/Qj4kKRHgcdI1UwllwAPS3ogIk4uW38DcAjwEGkinr+NiM6cYMy2ON/N1czMqnIVk5mZVeUEYWZmVTlBmJlZVU4QZmZWlROEmZlV5QRhZmZVOUGYmVlV/wcZilWdaYkX2wAAAABJRU5ErkJggg==",
Q
Quleaf 已提交
1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262
      "text/plain": [
       "<Figure size 432x288 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    }
   ],
   "source": [
    "# Using Iris\n",
    "test_rate = 0.2\n",
    "num_qubit = 4\n",
    "\n",
    "# acquire Iris data as quantum states\n",
    "iris =Iris (encoding='angle_encoding', num_qubits=num_qubit, test_rate=test_rate,classes=[0, 1], return_state=True)\n",
    "\n",
    "quantum_train_x, train_y = iris.train_x, iris.train_y\n",
    "quantum_test_x, test_y = iris.test_x, iris.test_y\n",
    "testing_data_num = len(test_y)\n",
    "training_data_num = len(train_y)\n",
    "\n",
    "acc = QClassifier2(\n",
    "        quantum_train_x, # training x\n",
    "        train_y,         # training y\n",
    "        quantum_test_x,  # testing x\n",
    "        test_y,          # testing y\n",
    "        N = num_qubit,   # Number of qubits required\n",
    "        DEPTH = 1,       # Circuit depth\n",
    "        EPOCH = 4,       # Number of training epochs, the total iteration number \"EPOCH * (Ntrain / BATCH)\" is chosen to be about 200\n",
    "        LR = 0.1,        # Set the learning rate\n",
    "        BATCH = 4,       # Batch size during training\n",
    "      )\n",
    "plt.plot(acc)\n",
    "plt.title(\"Classify Iris 0&1 using angle encoding\")\n",
    "plt.xlabel(\"Iteration\")\n",
    "plt.ylabel(\"Testing accuracy\")\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "The second case is MNIST. It is a handwritten digit dataset and has 10 classes. Each figure has $28\\times28$ pixels, and downscaling methods such as ``resize`` and ``PCA`` should be used to transform it into the target dimension."
   ]
  },
  {
   "cell_type": "code",
Q
Quleaf 已提交
1263
   "execution_count": 30,
Q
Quleaf 已提交
1264 1265 1266 1267 1268 1269
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
Q
Quleaf 已提交
1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284
      "epoch: 0 iter: 0 loss: 0.3369 train acc: 0.4500 test acc: 0.4700\n",
      "epoch: 0 iter: 5 loss: 0.2124 train acc: 0.6250 test acc: 0.5750\n",
      "epoch: 0 iter: 10 loss: 0.2885 train acc: 0.4500 test acc: 0.5550\n",
      "epoch: 1 iter: 0 loss: 0.2455 train acc: 0.4750 test acc: 0.6300\n",
      "epoch: 1 iter: 5 loss: 0.1831 train acc: 0.7750 test acc: 0.7550\n",
      "epoch: 1 iter: 10 loss: 0.1584 train acc: 0.8000 test acc: 0.8000\n",
      "epoch: 2 iter: 0 loss: 0.2106 train acc: 0.7000 test acc: 0.7800\n",
      "epoch: 2 iter: 5 loss: 0.1612 train acc: 0.8250 test acc: 0.7600\n",
      "epoch: 2 iter: 10 loss: 0.1550 train acc: 0.8250 test acc: 0.8300\n",
      "epoch: 3 iter: 0 loss: 0.1663 train acc: 0.8000 test acc: 0.8400\n",
      "epoch: 3 iter: 5 loss: 0.1485 train acc: 0.8500 test acc: 0.8450\n",
      "epoch: 3 iter: 10 loss: 0.1655 train acc: 0.8000 test acc: 0.8350\n",
      "epoch: 4 iter: 0 loss: 0.1625 train acc: 0.8000 test acc: 0.8700\n",
      "epoch: 4 iter: 5 loss: 0.1297 train acc: 0.8500 test acc: 0.8400\n",
      "epoch: 4 iter: 10 loss: 0.1646 train acc: 0.7750 test acc: 0.8850\n"
Q
Quleaf 已提交
1285 1286 1287 1288
     ]
    },
    {
     "data": {
Q
Quleaf 已提交
1289
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEWCAYAAABrDZDcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAA3EElEQVR4nO3dd3xV9f348dc7CRD2XiGBRAEhIMgQQbBOFBe42gIKKlRrq62tdqh1tPqt1dpq219tlSVgFbUKihTUqlQE2XvPMBICCSEbst+/P84JXkLGJeTm3OS+n49HHrln3HPed533+YzzOaKqGGOMCV1hXgdgjDHGW5YIjDEmxFkiMMaYEGeJwBhjQpwlAmOMCXGWCIwxJsRZIqghIvJbEflXALe/VUSucB+LiLwhIukisipQ+zRVE5HXROQpr+M4FyJyhYgk+kyf+q7V0Pb3i8g1NbW92hTo9yZYWCI4CyIyXkTWiEiOiCSLyCIRGVEb+1bVPqr6P3dyBDASiFbVIWezHTdhqYg8XGb+w+7837rTV7jT/yiz3lIRucd9fI+ILPVZNkJEvhGRTBE5LiLLRORiEXnCfc9yRCRPRIp9preWE2M797lpIpIhIstFZHiZdQaJyFp3G7tE5LpythMuIv8nIodFJFtE1otIq7N5v6qiqg+o6nM1uU2v+X7XAn2CU9eU+R3WG5YI/CQijwB/AZ4HOgJdgX8AYzwIpxuwX1Vzq/n8XcDEMvPuduf7ygUmiEhsVRsUkRbAAuD/AW2ALsDvgHxVfV5Vm6lqM+ABYHnptKr2KWdzOcAkoD3QGngR+FhEInzW+TuwCGgOXAcklt2Iu/9LgWFAC2ACkFfVazEm1Fgi8IOItASeBR5U1bmqmquqhar6sar+soLn/FtEjrhnx0tEpI/PshtEZJt7lpokIr9w57cTkQXuWfBxEflaRMLcZftF5BoRmQxMA4a5Z8Ovi8gJEWnrs/2BIpIqIg0qeEmrgSalMbn/I935vjKAmcAzfrxNPQFUdY6qFqvqSVX9TFU3+fHc06hqnqruVNUSQIBinITQxme1QuCAOhJU9bSShYi0Bn4G3KeqpettUdVyE4GI/E9EfuAzfaq041bFvSIiKSKSJSKbRaSvu2ymiPyf+/gKEUkUkUfddZNF5F6fbbYVkY/dbax2SytLy8bis35l36GZIvIPt1Sa45agOonIX8SpMtwhIgN81t8vIo+737t0caoWIyvYb+l3bRTwBPB9dx8bfZf7rH9aqUFEJojIAbdE95sy2w4TkcdEZK+7/D0R8f1cy8Zyk4hscH8T34hIvzJx/kJENrnv0bu+r0lExrjPzXL3N8qdHyUi893f2B4Ruc/nOY3d9zZdRLYBF5f33vi87vdEZLb7W94qIoN91h0oTik02/0s3y39rgQbSwT+GYZzoJx3Fs9ZBPQAOgDrgLd8lk0HfqiqzYG+wJfu/Edxzmzb45Q6ngBOGwNEVadz+ln1D4H/Ad/zWW0C8I6qFlYS35t8Wyq4250uz++B20Xkgkq2BU5polhEZonI9e6B+JyIyCacM/j5wDRVTfFZvBr4o4gMrODpFwJFwB3uwXSXiDxYzVCuBb6Dk+xa4rzXaRWs28ldpwswGXjV5714FaeU1QnnPb+7iv1W9h3CjeNJoB2QDyx312sHvA+8XGb9O3FKT+e7r+XJynauqp/glIDfdb9r/auIFxGJB/6J8x2MAtoC0T6r/AS4BbjcXZ6O876Ut60BwAzgh+52Xgfmi0gjn9W+B4wC4oB+wD3uc4cAs4FfAq1wPr/97nPewfmdRQF3AM+LyFXusmdw3p/zcd6rqj6j0e72WuF8T//u7r8hzvFiJs4JzBzg1iq25RlLBP5pCxxT1SJ/n6CqM1Q1W1Xzgd8C/cUpWYBzNhsvIi1UNV1V1/nM7wx0c0scX6t/g0HNAu4Cp14cGEfFB/ZS/wLGiVNqGOtOl/c6jgCv4ZSIKqSqWThtFwpMBVLds66OfsRf0Tb74VTpjAd82yLGAle68z8uTQbuWexad7VonANyT5yDxB3Ab0VkZDVCKcSpguoFiKpuV9XkStZ91v38FuJUc13gfi63A8+o6glV3YbzuVWoiu8QwDxVXeuWcuYBeao6W1WLgXeBAWU2+XdVPaSqx3ES/LizeA/8dQewQFWXuHE/BZT4LH8A+I2qJvq8rjvk9Gq/UvcDr6vqSreUOQsn4Q31WedvqnrYfU0fAxe58ycDM1T1v6paoqpJqrpDRGKA4cCv3ZLnBpwSdulJ0feA36vqcVU9BPytite7VFUXuu/5m0BpshwKRLjxFarqXCBoO3ZYIvBPGtCugi/rGcRppHzBLY5m8e2ZSDv3/+3ADcABEflKRIa5818C9gCficg+EXnMz/g+wkkscTiNyJmqWumXTlUPuvt6Htjtfukr8iJwnYhUekboHiDvUdVonJJOFE67SrW5P9Y5wGM++38YeElVF+GcLS5yk8Fwvi1dnXT/P+tWU23COXO7oRoxfIlzpvcqkCIiU8RpEylPWpkThhNAM5xSXgTg+z5X+J778R0COOrz+GQ5083KbNZ3fwdwPp+aFuW7H7cdy7f01A2Y51b1ZADbcar+yjth6AY8Wrquu35MmbiP+Dwufa9x19tbQXzHVTXbZ94BnBLcGfG7yypTdv+R7nEiCkgqcyJX2W/MU5YI/LMc50zkFj/XH4/TiHwNzllprDtfAFR1taqOwSnyfwi8587PVtVHVfU8nCLnIyJydVU7c88I38MpFUyg6tJAqdk41VGzq9h+Gs4B3e/eMaq6A6dY3Nff51ShAXCe+zjCnUZVFwCPAJ/hNDD/3V2ntG3C94dYWekqF2jiM93Jd6Gq/k1VBwHxOKWMctuGKpGKU1XlW00SU8n6lX6Hqsl3f12Bw348p7z3rLL3Ktl3PyLSBKdEXeoQcL2qtvL5i1TVpHL2cwjn7Nx33SbuiUFVDuFU75R1GGgjIs195nUFSvd/WvzusupIBrqIiO/nVdnn7SlLBH5Q1UzgaZz63ltEpImINHDrwv9YzlOa4ySONJwfzPOlC0SkoYjcKSIt3Tr8LNyis9sw1t398mTinCmVnLH18s3GqR8djf+J4F2c+u/3/Fj3ZZweOL3LWygivcRpJI12p2Nwqh5W+BmL77aGitMVtaHbePdrnDPGle4q/waeFpH+4jSm78I5G2tcug1V3Qt8DfxGRBqJSG+cKrAFFex2A3Cb+9l2x6laKI3nYhG5xK1Gy8Vpt/D3cymNpxiYi1M91UREenFmzy1fFX6HzsGDIhItTuPsb3A+/6ocBWLd97nUBmCs+xsYjFMdVOp94KbSzw+nStH3ua8BvxeRbgAi0l5EKup5NxV4wH3vRUSaisiNZQ7iFZkO3CsiV4vTQN1FRHq5Jd9vgD+ISKQ4jc+T+bZq9D3gcRFp7X6Xf+LHvsqzHOf3+5CIRLiv8ay6etcmSwR+UtU/45x5PolzdncIeAjnjL6s2ThFyiRgG2ceDCcA+90i/wM4jXjgNAx+jlOvvBz4h6ou9jO+ZTgHp3WqWlVxtvQ5J1X1c1U96ce6WcAfOb3njq9s4BJgpYjk4rzmLTgljrPVCKcaJg3nPbwBuFFVS89g/4TTiDjP3e8Udz+zgP/41KOPw6leSAP+Azylql9UsM9XgAKcA98sTm+YbYFzUErH+VzTcKrxztZDOGf3R3CS9Rycg315qvoOVcfbOCWnfTjVJv70YPm3+z9NRErbsp7COdtOx+mi+3bpym7vrQfdecnuOr5de/+K06j6mYhk47yuS8rbsaquAe7DKeWl41Rl3uNHzLhVo/fifK6ZwFc43wVwvhexOKWDeTjtNp+7y36H874n4LxX/p5Uld1/AXAbTpLJwCmtL6Diz9tT4l9bpKkLRORL4G1VneZ1LKZqIvIi0ElVq+qZUhP72g/8wOeAZ2qZiKwEXlPVN7yOpSwrEdQTInIxMBD/ivvGA271WT+3mmMIztni2XRJNnWIiFwuzrUdESJyN0731k+8jqs8fvWCMcFNRGbhNGQ/XKY3hAkuzXGqg6JwqqD+jNPjy9RPF+C0OTTFqY67o5Jux56yqiFjjAlxVjVkjDEhLqBVQ+KM7fFXIBxniIAXyizvhtP7oz1wHLhLVcsbPOyUdu3aaWxsbGACNsaYemrt2rXHVLV9ecsClgjcS+pfxbnSNRFYLSLz3UvrS/0JmK2qs8QZ6+MPOF0rKxQbG8uaNWsCFbYxxtRLIlJht/JAVg0NAfao6j63T+07nDlkczzfDgmwuJzlxhhjAiyQiaALp4+tkci343mU2ohz0QU4I/M1F5/hlEuJyP3i3BBmTWpqakCCNcaYUOV1Y/EvgMtFZD3OsLRJOJdln0ZVp6jqYFUd3L59uVVcxhhjqimQjcVJnD7IUjTfDuwEgDtkwG0AItIMuF1VMwIYkzHGmDICWSJYDfQQkTh38KmxOGOMnCLOHblKY3gcpweRMcaYWhSwROCOyf4Q8CnOmOPvqepWEXlWREa7q10B7BSRXTijS/4+UPEYY4wpX527snjw4MFq3UeNMebsiMhaVR1c3jKvG4uNMcZUoai4hOcXbudwRpUjxleLJQJjjAlihcUlPPzuBqYs2ceXO1ICsg8bfdQYY4JUYXEJP52znkVbjvDEDb24a2i3qp9UDZYIjDEmCBUUlfDQ2+v4bNtRnropnskj4gK2L0sExhgTZPKLinnwrXV8vj2F394czz3DA5cEwBKBMcYElbzCYn70r7Us3pnKc2P6MGFYbMD3aYnAGGOCRF5hMT98cy1f7Url+VsvZPwlXWtlv9ZryBgTko5m5bH2wHGvwzjlZEEx981ew5Ldqbx4e+0lAbASgTEmBC3emcLP391AxolCbrkoimdu7kPrpg09i+dkQTGTZ61m+b40/nh7P747OKbqJ9UgKxEYY0JGcYny8mc7mTRzNZ1aRPLA5eezYFMyI1/5ioWbvbmvfG5+EffOXMWKfWm8/L3+tZ4EwEoExpgQcSwnn4ffWc+yPWncMSia58b0pXHDcMZcFMUv39/Ij99axw0XduJ3o/vSvnmjWokpJ7+ISW+sZs2B47zy/YsYc1HZW7bUDisRGGPqvTX7j3PT35ayZn86f7y9H3/6bn8aNwwHoHfnFnz44+H8atQFfL4thZGvfMWH65MI9Dhs2XmF3DNjFWsPpvPXsQM8SwJgicAYU4+pKtO+3sfYKSto1CCMuT++lO9dfGbVS0R4GD++ojsLHx5BXLum/OzdDdw3ew1HMvMCEldWXiETZ6xiw6EM/j5uADf3jwrIfvxlicAYUy9l5xXy47fW8X//2c5VvTow/6ER9IlqWelzundozvsPXMqTN/Zm6Z5jjHzlK95bfahGSweZJwuZMH0VW5IyefXOgVx/Yeca23Z1WSIwxtQ725OzGP33ZXy27Si/uaE3r08YRMvGDfx6bniY8IPLzuOTh79D784t+NUHm5g4YxWJ6SfOOa6MEwXcNW0l2w5n8s87B3Fdn07nvM2aYInAGFOv/HvNIW55dRm5+UXMuW8o933nPETkrLcT264p79w3lOfG9GHtgXSue2UJb644QElJ9UoH6bkF3DltJTuPZPP6hEFcE9+xWtsJBEsExph6Ia+wmMc+2MQv39/EwK6t+c9PL2NIXJtz2mZYmDBhWCyf/uw7DOzWmqc+3ML4aSs4kJZ7Vts5nlvA+Gkr2Z2Sw5SJg7iqV/AkAbBEYIypBw6k5XL7P7/hndWHePDK83lz8pAa7QIa06YJsycN4cXbL2RrUhbX/WUJ05cmUOxH6eBYTj7jp65gX2oO0+8ezBUXdKixuGqKXUdgjKnTPtt6hEf/vZEwEWbcMzhgZ9siwvcv7srlPTvwxLzNPLdgGws3J/Pi7f3o3qFZuc9JzXaSwKH0E8y452KGd28XkNjOld2z2BhTbUXFJaTm5JOcmceRzDxSsvKIadOEi2Ja0bZZYC/KKiou4aVPd/L6kn30i27Jq+MHEtOmSUD3WUpV+XBDEr+dv42ThcX8/Jqe3HdZHBHh31aypGTlMW7qCg5n5DHjnosZdn7bWomtIpXds9hKBMaYchUUlXA0K48jWXnugf7kqQP+qQN/dh4V1Y50a9uEATGtGNC1NQO6tqJ35xY0CK+Z2uiUrDweens9q/Yf566hXXnqpngaRYTXyLb9ISLcOiCa4d3b8fSHW3nxkx0s3JzMS9/tR69OLTiSmcf4qSs4kpXHrElDzrmtItCsRGBMCCooKiH5jAO7O52Vx+GMPI7l5J/xvKYNw+ncqjGdW0bSqUWk87+lO90ykrbNGrL/2AnWH0xn/cEM1h1MJyXb2U6jiDD6Rbd0EoObIDq1jDzr2JfvTeMnc9aTm1/EH267kFsGeHdFbqn/bErm6Y+2kJVXyP3fOY//bEomNTufWZOGMDg2OJJAZSUCSwTG1HOqyuHMvFMH5/UH09lyOIuCopLT1mvZuMGpA7pzoG98+nTLSJpH+tcX33ffyZl5p5LC+oPpbEnKoqDY2XfnlpEM6NqKATFOqaFvl5ZENij/zL6kRHltyV7+9OlO4to15bW7BtGjY/PqvSkBcDy3gN99vJWPNhymeaMIZk4awqBurb0O6xRLBMaEkJMFxWxOymT9wXT34JtR7ll5jw7NiGrV+NSBvknD2qkpzi8qZnty9reJ6VA6h46fBKBBuBDfucWp6qQBMa2JadOYrJNFPPLeBr7YkcLN/aN44bYLadooOGu2v9l7jPbNGgVVkgJLBMbUW6rK/rQTpx1Utydnn+rWWFpPP7BbawbEtKZX5+Y1Vk9fk1Kz89lw6NtSw6bETE4UFAPQtmlDwsKEjBMFPHljPBOHdavWBWKhzhqLjaknsvIK2Xgo41QVz/pDGWScKASgWaMI+se05EeXn8+Arq1qpedOTWnfvBEj4zsy0r3atqi4hF1Hc1h/yElwR7PyeGRkTwZ0DZ6qlvrEEoExQSwnv4iPNx4+dca/JzWH0kJ8jw7NuC6+k1OF0rU13Ts0IzysfpwpR4SHER/VgvioFtx5STevw6n3LBEYE6RUlR/9ay1f7z5GqyYNGBDTipv7RzGgayv6RbfyexA1Y6piicCYIPX+2kS+3n2MJ2/szeQRcVYvbgIm+FqNjDGkZOXx3IJtXBzbmknDLQmYwLJEYEyQUVWe+mgLeUUlvHB7P8LqSb2/CV6WCIwJMgs3H+HTrUf5+TU9Ob99+YOZGVOTLBEYE0TScwt4Zv4WLuzSkvsui/M6HBMirLHYmCDy7IJtZJwoZPakS04bydKYQLJvmjFBYvGOFOatT+LHV5xPfFQLr8MxIcQSgTFBIDuvkCfmbaZHh2Y8eFV3r8MxIcYSgTFB4IVFOzialccf7+hXq+PqGwOWCIzx3PK9aby18iCThsfZWDrGE5YIjPHQyYJiHpu7iW5tm/DotRd4HY4JUQFNBCIySkR2isgeEXmsnOVdRWSxiKwXkU0ickMg4zEm2Lz8350cSDvBC7f1o3FDqxIy3ghYIhCRcOBV4HogHhgnIvFlVnsSeE9VBwBjgX8EKh5T99S1e2WcrQ2HMpi+NIHxl3T1/MbmJrQF8jqCIcAeVd0HICLvAGOAbT7rKFDaT64lcDiA8Zg6JPNkIZNnruZYTj4Th8XyvYtjaBakd6SqjvyiYn71/kY6tojk8et7eR2OCXGBrBrqAhzymU505/n6LXCXiCQCC4GflLchEblfRNaIyJrU1NRAxGqCSOaJQiZMX8nGxAxaNm7Aswu2Mez5L3huwTYOHT/hdXg14tXFe9l1NIff39r3rO8DbExN87qxeBwwU1WjgRuAN0XkjJhUdYqqDlbVwe3bt6/1IE3tSc8tYPy0FexIzua1uwbx0UMj+PDB4VzVuwOzvtnP5S8t5odvrmHlvrQ6W3W0PTmLfyzewy0XRXFVr45eh2NMQKuGkoAYn+lod56vycAoAFVdLiKRQDsgJYBxmSB1PLeAO6etZG9qDq9PGMSVvToAcFFMK/46dgCPXd+LN5cf4O1VB/l061H6dmnBpOFx3NQvioYRXp/T+KeouIRfvb+Jlo0b8PTNfbwOxxggsCWC1UAPEYkTkYY4jcHzy6xzELgaQER6A5GA1f2EoLScfMZPXcG+1BymThx8Kgn46tyyMb8a1Yvlj13N87deSF5hCY+8t5HhL37J377YTVpOvgeRn51pSxPYnJTJ78b0oU3Thl6HYwwAEsjitdsd9C9AODBDVX8vIs8Ca1R1vtuLaCrQDKfh+Feq+lll2xw8eLCuWbMmYDGb2peanc+d01Zw8PgJpk28mBE92vn1PFVlye5jzFiawFe7UmkYEcatF3Xh3hGx9OoUfGP17EvN4fq/fs3lPdvz+oRBdrMZU6tEZK2qDi53WV2rZ7VEUL+kZOcxfupKktJPMv3uwVza3b8kUNaelGzeWLafD9YlkldYwvDubZk0PI4rL+gQFDd2KSlRxk5ZwY4jWXz+yOV0aBHpdUgmxFSWCOpGxaqpl45m5TF2ygoOZ5zkjXsvrnYSAOjeoTm/v/VClj92Nb8adQF7U3KZPGsNV7/8FbOX7yc3v6gGIz97b608wKr9x3nypnhLAiboWInAeCI58yTjp64kJSuPmZOGcHFsmxrdfmFxCYu2HGH60gQ2HsqgeWQE44Z05e5LY+nSqnGN7qsqieknuO6VJQzs1prZk4ZYlZDxRGUlgvpzhY6pMw5nnGTc1BWk5RQwe/IQBnWr2SQA0CA8jNH9oxjdP4q1B9KZsSyB6Uudv1F9OjFpRCwDu7YO+EFZVXli3hYUeP7WCy0JmKBkicDUqsT0E4ybuoKM3ELenDykVkbbHNStNYO6tSYp4ySzl+9nzsqD/GdzMv2jWzJpRBzX9+0csO6nH6xLYsmuVH43ug8xbZoEZB/GnCurGjK15tDxE4ydsoLsvELenHwJ/WNaeRLHiYIiPliXxBtLE9h3LJeOLRoxcVgs44d0pXUNdulMyc5j5MtL6NmxGe/ePywoGq1N6LJeQ8ZzB9JyGT91JTn5Rfxr8iVcGN3S65AoKVG+2pXKjGUJfL37GI0iwrhtYDSThsfSo2Pzc97+A2+u5cudKSx6+DLOb9+sBiI2pvqsjcB4KuFYLuOnruBkYTFv/eAS+nbxPgkAhIUJV/bqwJW9OrDzSDYzv0lg7rpE5qw6yGU92jFpRByX92hfrTP5hZuT+WTrEX49qpclARP0rERgAmpvag7jp66gsFj51+RLgv6m7MdzC5iz6iCzvtlPSnY+57Vvyr3D47h9YBeaNPTvvCk9t4CRr3xF55aNmffjS4kIt17axntWNWQ8sSclh3FTV1BSorx931Au6HTu1S21paCohIWbk5mxLIFNiZm0bNyAcUO6MnFYN6Kq6H76yLsbmL/xMPMfGhH0ic+EDqsaMrVu19Fsxk9dCcA79w+tkTr32tQwIoxbBnRhzEXfdj+dsmQvU7/ex/V9OzFpRBwDy+nxtHhnCnPXJ/HTq7pbEjB1hiUCU+N2HMnizqkrCQ8T3r5vKN071N06chFhcGwbBse2ITH9BLOXH2DOqoMs2JTMRTGt3O6nnWgQHkZ2XiG/mbuZHh2a8eBV3b0O3Ri/WdWQqVHbDmdx1/SVNAgX5tw3lPPqYUNpbn4RH6xL5I1l+0k4lkvnlpFMHBbLvtQcPliXyAc/urRWro8w5mycU9WQiISranHNh2Xqmy1Jmdw1fSWNG4Qz576hxLZr6nVIAdG0UQQTh8Vy1yXdWLwzhRnLEnjxkx0A/GBEnCUBU+f4UzW0W0Q+AN5Q1W1Vrm1C0ubETO6ctoLmkQ2Yc99Qurat/1fRhoUJV/fuyNW9O7LjSBZLdx/jrqHdvA7LmLPmTyLoj3NTmWnubSRnAO+oalZAIzN1xrbDWYyftoIWkQ145/6hITmUQq9OLYLyHgjG+KPKDs6qmq2qU1X1UuDXwDNAsojMEhFrETP8ffFuIsKEd38YmknAmLquykQgIuEiMlpE5uHcbezPwHnAx8DCwIZngl3miUI+35bCmIu6EN3akoAxdZFfbQTAYuAlVf3GZ/77IvKdwIRl6or/bE6moLiE2wdGex2KMaaa/EkE/VQ1p7wFqvrTGo7H1DFz1yXSvUMz+nax+nFj6ip/BkF5VURalU6ISGsRmRG4kExdcSAtlzUH0rltYBe74YoxdZg/iaCfqmaUTqhqOjAgYBGZOmPe+iRE4JaLungdijHmHPiTCMJE5NQVMiLSBhuaIuSpKvPWJzE0rm2Vg7AZY4KbPwf0PwPLReTfgAB3AL8PaFQm6K07mM6BtBM8dKX1IDamrqsyEajqbBFZC1zpzrrNrjA2c9clEdkgjOsv7Ox1KMaYc+RXFY+qbhWRVCASQES6qurBgEZmglZ+UTELNiVzXZ9ONGtktYTG1HX+XFA2WkR2AwnAV8B+YFGA4zJBbPGOFDJPFnLrAGskNqY+8Kex+DlgKLBLVeOAq4EVAY3KBLW565Jo37wRI7q38zoUY0wN8CcRFKpqGk7voTBVXQyUO6a1qf/ScwtYvDOFMf2j7F68xtQT/lTwZohIM2AJ8JaIpAC5gQ3LBKsFmw5TWKzcZkNKGFNv+HNKNwY4Afwc+ATYC9wcyKBM8PpgXRK9OjW3+/EaU49UWiIQkXBggapeCZQAs2olKhOU9qXmsOFQBk/c0MvrUIwxNajSEoF7i8oSEWlZS/GYIDZvfRJhAmNsSAlj6hV/2ghygM0i8l982gZs5NHQUlLiDCkxvHs7OraI9DocY0wN8icRzHX/TAhbvf84ieknefTanl6HYoypYf4MMWHtAoZ565No0jCc6/p08joUY0wNqzIRiEgCoGXnq+p5AYnIBJ28wmL+symZUX070aShDSlhTH3jz6/a9+KxSOC7QJvAhGOC0efbj5KdX2S3ozSmnqryOgJVTfP5S1LVvwA3Bj40EyzmrkuiU4tIhp7X1utQjDEB4E/V0ECfyTCcEoJf9QMiMgr4KxAOTFPVF8osf4Vvh7duAnRQ1Vb+bNvUjmM5+Xy1K5X7LjuP8DC7HaUx9ZG/N6YpVYQzCun3qnqSezHaq8BIIBFYLSLzfe9loKo/91n/J9gtMIPO/A2HKS5Rbhto1w4YU1/502voyqrWqcAQYI+q7gMQkXdwhquo6KY244BnqrkvEyDz1ifRt0sLenZs7nUoxpgA8ed+BM+LSCuf6dYi8n9+bLsLcMhnOtGdV94+ugFxwJcVLL9fRNaIyJrU1FQ/dm1qwu6j2WxOyuTWAdZIbEx95s+gc9erakbphKqmAzfUcBxjgffdIS3OoKpTVHWwqg5u3759De/aVGTu+iTCw4TR/aO8DsUYE0D+JIJwEWlUOiEijYFGlaxfKgmI8ZmOdueVZywwx49tmlpSUqJ8uD6J7/RoR/vm/nzcxpi6yp9E8BbwhYhMFpHJwH/xbxTS1UAPEYkTkYY4B/v5ZVcSkV5Aa2C5/2GbQFuxL43kzDy774AxIcCfxuIXRWQjcI076zlV/dSP5xWJyEPApzjdR2eo6lYReRZYo6qlSWEs8I6qnnH1svHO3PVJNG8Uwcj4jl6HYowJMH+uI4gD/qeqn7jTjUUkVlX3V/VcVV0ILCwz7+ky0789m4BN4J0sKGbR5mRu6hdFZINwr8MxxgSYP1VD/8a5KU2pYneeqac+23aE3IJibrVrB4wJCf4kgghVLSidcB83DFxIxmsfrEuiS6vGDIm1IaWMCQX+JIJUERldOiEiY4BjgQvJeCklK4+lu1O5dUAXwmxICWNCgj9DTDwAvCUifwcE5yKxiQGNynjmow2HKVGsWsiYEOJPr6G9wFARaeZO5wQ8KuOZueuT6B/TivPbN/M6FGNMLfF3FNEbgT5ApIhTXaCqzwYwLuOB7clZbE/O4nej+3gdijGmFvkz1tBrwPeBn+BUDX0X6BbguIwH5q1PIiJMuNmGlDAmpPjTWHypqk4E0lX1d8AwwO5gXs8Uu0NKXHFBB9o0tU5hxoQSfxLBSff/CRGJAgqBzoELyXhh2Z5jpGTnc7s1EhsTcvxpI1jgDkP9ErAO50b2UwMZlKl9c9cl0iIygqt6d/A6FGNMLfOn19Bz7sMPRGQBEKmqmYENy9SmnPwiPt16lFsHdqFRhA0pYUyo8avXUClVzQfyAxSL8cgnW45wsrCY2wZYtZAxocifNgJTz81bn0jXNk0Y1K2116EYYzxgiSDEJWee5Ju9adw6oAul14gYY0KLP8NQDyxndiZwQFWLaj4kU5s+XH8YVbjNegsZE7L8aSP4BzAQ2IRzQVlfYCvQUkR+pKqfBTA+E0Cqytx1iQzq1ppubZt6HY4xxiP+VA0dBga4N48fBAwA9gEjgT8GMjgTWFsPZ7E7JcdKA8aEOH8SQU9V3Vo6oarbgF6qui9wYZnaMHddEg3Dw7jpQhtSwphQ5k/V0FYR+Sfwjjv9fWCbiDTCucrY1EFFxSXM35jE1b070LJJA6/DMcZ4yJ8SwT3AHuBn7t8+d14hcGVgwjKB9vXuYxzLKeBWu3bAmJDnz5XFJ4E/u39l2b0J6qgP1iXSukkDrrjAhpQwJtT50310OPBbnKGnT62vqucFLiwTSFl5hfx321G+f3EMDSPsUhJjQp0/bQTTgZ8Da4HiwIZjasOizcnkF5Vw28Bor0MxxgQBfxJBpqouCngkptbMXZfEee2a0j+6pdehGGOCgD+JYLGIvATMxWfAOVVdF7CoTMAcOn6ClQnH+cW1PW1ICWMM4F8iuMT9P9hnngJX1Xw4JtA+2pAEwJiLrLeQMcbhT68h6yJaTzhDSiRxSVwbYto08TocY0yQqDARiMhdqvovEXmkvOWq+nLgwjKBsHxvGvuO5fLDy63DlzHmW5WVCEpHIWtezjINQCwmgAqLS3hm/laiWzdmdH+rFjLGfKvCRKCqr7sPP1fVZb7L3GsLTB0yY2kCu1NymDZxMI0b2u0ojTHf8udqov/n5zwTpA5nnOQvn+/mmt4duSa+o9fhGGOCTGVtBMOAS4H2ZdoJWgB2SlmHPPvxNhTlmZvjvQ7FGBOEKmsjaAg0c9fxbSfIAu4IZFCm5izemcInW4/wy+susJ5CxphyVdZG8BXwlYjMVNUDACISBjRT1azaCtBUX15hMc98tJXz2zflvsusp5Axpnz+tBH8QURaiEhTYAvOvQh+GeC4TA345//2cvD4CZ4b09cGlzPGVMifo0O8WwK4BVgExAETAhmUOXcJx3L551d7Gd0/iku7t/M6HGNMEPMnETQQkQY4iWC+qhZi1xEENVXlmflbaRgexpM39vY6HGNMkPMnEbwO7Me5wGyJiHTDaTA2QWrRliMs2ZXKo9f2pEOLSK/DMcYEOX/GGvob8DefWQdExMYfClI5+UU8+/E24ju3YMLQbl6HY4ypA6osEYhIRxGZLiKL3Ol44G5/Ni4io0Rkp4jsEZHHKljneyKyTUS2isjbZxW9OcPfvtjNkaw8nrulLxHh1kBsjKmaP0eKmcCnQJQ7vQvnJvaVEpFw4FXgeiAeGOcmEd91egCPA8NVtY8/2zUV23kkm+lLExh7cQyDurX2OhxjTB1RYSIQkdJqo3aq+h5QAqCqRfh3y8ohwB5V3aeqBcA7wJgy69wHvKqq6e62U84yfuNSVZ78cDMtIiP49aheXodjjKlDKisRrHL/54pIW9yeQiIyFMj0Y9tdgEM+04nuPF89gZ4iskxEVojIqPI2JCL3i8gaEVmTmprqx65Dzwfrkli9P53Hru9F66YNvQ7HGFOHVNZYXHofw0eA+cD5IrIMaE/NDTERAfQArgCicXolXaiqGb4rqeoUYArA4MGDretqGZknCvnDwu0M7NqK7w6K8TocY0wdU1ki8B1sbh6wECc55APXAJuq2HYS4HtUinbn+UoEVrrXJiSIyC6cxLDav/ANwEuf7SD9RAGzJw8hLMzuQ2yMOTuVVQ2F4ww61xznGoIId14Tyr9ZTVmrgR4iEiciDYGxOCULXx/ilAYQkXY4VUX7/A/fbDyUwVsrD3L3pbH0iWrpdTjGmDqoshJBsqo+W90Nq2qRiDyE0+MoHJihqltF5FlgjarOd5ddKyLbcBqgf6mqadXdZ6gpLlGe/HAL7Zs14pGRPb0OxxhTR/nTRlBtqroQp0rJd97TPo8Vpw2i3Psim8q9vfIAm5My+du4ATSPbOB1OMaYOqqyqqGray0Kc9ZSs/P546c7Gd69LTf36+x1OMaYOqzCRKCqx2szEHN2/rBoO3mFxTw7pi8i1kBsjKk+G4OgDlqxL42565K4/zvncX77Zl6HY4yp4ywR1DGFxSU89eEWurRqzENX9vA6HGNMPVDl6KMmuMxYmsDulBymTRxM44bhXodjjKkHrERwjl5dvIcfzFrDV7tScTpBBc7hjJP89YvdXNO7I9fEdwzovowxocNKBOcgLSefv36xm+IS5fPtR+neoRmThsdx64AuATlbf27BNkpUeebm+KpXNsYYP1mJ4By8vfIgBUUlfPzQCF7+Xn8aRYTxxLzNDHvhC/74yQ6OZObV2L4W70xh0ZYj/OSqHsS0aVJj2zXGGCsRVFNBUQlvrjjAZT3aER/VgvioFtw6oAur96czY2kCr321lylL9nFjv85MGh5H/5hW1d5XXmExz3y0lfPaN+UHl8XV3IswxhgsEVTboi3JpGTn8+Lt/U7NExGGxLVhSFwbDh0/wcxv9vPu6kN8tOEwg7q1ZtLwOK7r0/Gs7xz2z//t5eDxE7z1g0toFGENxMaYmmVVQ9WgqsxYmsB57Zpyec/25a4T06YJT90Uz/LHr+KZm+NJzc7nwbfXcflL/2PKkr1kniz0a1/7j+Xyz6/2Mrp/FMO7t6vJl2GMMYAlgmpZdzCDjYmZ3DM8tsphn5tHNuDe4XEs/sUVTJkwiJg2jXl+4Q6G/eELnv5oC/tScyp8rqry9PytNAwP48kbe9f0yzDGGMCqhqrljWUJNI+M4PaB0X4/JzxMuLZPJ67t04mthzN5Y9l+3ll1iNnLD3B1rw5MGhHHpee3PW24iE+2HGHJrlSevimeDi0iA/FSjDHGSgRnKznzJIu2HGHsxTE0bVS9PNonqiV/+m5/lj12FQ9f3YONiRncOW0lo/7yNe+uPkheYTE5+UX87uNt9O7cgonDutXwqzDGmG9ZieAszV5+AFVl4rDYc95W++aN+PnInvzoivP5eONhpi9N4NcfbObFT3bSvUMzjmTl8eqdA8+6cdkYY86GJYKzcLKgmDmrDjIyvmON9uWPbBDOdwfHcMegaFbsO870pQl8seMo44Z0ZVC31jW2H2OMKY8lgrPw4YYkMk4Ucu/wwPTlFxGGnd+WYee35VhOPq0a281mjDGBZ4nAT6rKG8sSiO/cgkvi2gR8f+2aNQr4PowxBqyx2G/L9qSx62gO9w6PtRvBGGPqFUsEfnpjWQJtmzbk5v5RXodijDE1yhKBHxKO5fLlzhTuHNqNyAY2xIMxpn6xROCHWd/sJyJMuGtoV69DMcaYGmeJoApZeYX8e80hbuoXRYfmdnWvMab+sURQhX+vSSS3oJh7h8d6HYoxxgSEJYJKFJcoM79JYHC31vSLbuV1OMYYExCWCCrxxfajHDp+MmAXkBljTDCwRFCJN5btJ6plJNf1sRvFG2PqL0sEFdienMXyfWlMGBZrg74ZY+o1O8JV4I1lCUQ2CGPckBivQzHGmICyRFCOtJx8PtxwmNsGRtOqSUOvwzHGmICyRFCOOasOUlBUwr2XxnodijHGBJwlgjIKikp4c8UBLuvRjh4dm3sdjjHGBJwlgjIWbUnmaFY+k6zLqDEmRFgiKGPGsv2c164pl/ds73UoxhhTKywR+Fh3MJ2NhzK4+9JYwsLsngPGmNBgicDHjKUJNI+M4I5B0V6HYowxtcYSgSs58ySLthzh+4NjaNrI7uBpjAkdlghcby4/gKpyt3UZNcaEmIAmAhEZJSI7RWSPiDxWzvJ7RCRVRDa4fz8IZDwVOVlQzJxVB7mmd0di2jTxIgRjjPFMwOpARCQceBUYCSQCq0VkvqpuK7Pqu6r6UKDi8MeHG5JIP1HIpBHWZdQYE3oCWSIYAuxR1X2qWgC8A4wJ4P6qRVV5Y1kCvTu34JK4Nl6HY4wxtS6QiaALcMhnOtGdV9btIrJJRN4XkVof4e2bvWnsOprDvcNjEbEuo8aY0ON1Y/HHQKyq9gP+C8wqbyURuV9E1ojImtTU1BoNYMbSBNo2bcjo/lE1ul1jjKkrApkIkgDfM/xod94pqpqmqvnu5DRgUHkbUtUpqjpYVQe3b19zV/zuP5bLlztTuPOSrkQ2CK+x7RpjTF0SyESwGughInEi0hAYC8z3XUFEOvtMjga2BzCeM8z8Zj8RYcJdQ7vV5m6NMSaoBKzXkKoWichDwKdAODBDVbeKyLPAGlWdD/xUREYDRcBx4J5AxVNWdl4h769N5MYLO9OhRWRt7dYYY4JOQC+hVdWFwMIy8572efw48HggY6jIe2sSyckvsi6jxpiQ53VjsSeKS5RZ3+xnULfW9Itu5XU4xhjjqZBMBF/uSOHg8RPcOzzW61CMMcZzIZkIZixNoHPLSK7r08nrUIwxxnMhlwi2J2exfF8aE4fF0iA85F6+McacIeSOhDOX7SeyQRjjhtT6RczGGBOUQioRpOXkM29DErcOiKZVk4Zeh2OMMUEhpBLBnFUHKSgqYZI1EhtjzCkhkwgKi0t4c8UBLuvRjh4dm3sdjjHGBI2QSQQLNydzNCvfuowaY0wZIZMImjWKYGR8R67o2cHrUIwxJqiEzF3ar+7dkat7d/Q6DGOMCTohUyIwxhhTPksExhgT4iwRGGNMiLNEYIwxIc4SgTHGhDhLBMYYE+IsERhjTIizRGCMMSFOVNXrGM6KiKQCB6r59HbAsRoMJ9DqUrx1KVaoW/HWpVihbsVbl2KFc4u3m6q2L29BnUsE50JE1qjqYK/j8FddircuxQp1K966FCvUrXjrUqwQuHitasgYY0KcJQJjjAlxoZYIpngdwFmqS/HWpVihbsVbl2KFuhVvXYoVAhRvSLURGGOMOVOolQiMMcaUYYnAGGNCXMgkAhEZJSI7RWSPiDzmdTwVEZEYEVksIttEZKuIPOx1TP4QkXARWS8iC7yOpTIi0kpE3heRHSKyXUSGeR1TZUTk5+73YIuIzBGRSK9j8iUiM0QkRUS2+MxrIyL/FZHd7v/WXsZYqoJYX3K/C5tEZJ6ItPIwxFPKi9Vn2aMioiLSrqb2FxKJQETCgVeB64F4YJyIxHsbVYWKgEdVNR4YCjwYxLH6ehjY7nUQfvgr8Imq9gL6E8Qxi0gX4KfAYFXtC4QDY72N6gwzgVFl5j0GfKGqPYAv3OlgMJMzY/0v0FdV+wG7gMdrO6gKzOTMWBGRGOBa4GBN7iwkEgEwBNijqvtUtQB4BxjjcUzlUtVkVV3nPs7GOVB18TaqyolINHAjMM3rWCojIi2B7wDTAVS1QFUzPA2qahFAYxGJAJoAhz2O5zSqugQ4Xmb2GGCW+3gWcEttxlSR8mJV1c9UtcidXAFE13pg5ajgfQV4BfgVUKO9fEIlEXQBDvlMJxLkB1cAEYkFBgArPQ6lKn/B+XKWeBxHVeKAVOANtxprmog09TqoiqhqEvAnnLO/ZCBTVT/zNiq/dFTVZPfxEaCu3Cx8ErDI6yAqIiJjgCRV3VjT2w6VRFDniEgz4APgZ6qa5XU8FRGRm4AUVV3rdSx+iAAGAv9U1QFALsFTbXEGt259DE4CiwKaishd3kZ1dtTpnx70fdRF5Dc41bJveR1LeUSkCfAE8HQgth8qiSAJiPGZjnbnBSURaYCTBN5S1blex1OF4cBoEdmPU+V2lYj8y9uQKpQIJKpqaQnrfZzEEKyuARJUNVVVC4G5wKUex+SPoyLSGcD9n+JxPJUSkXuAm4A7NXgvrDof54Rgo/tbiwbWiUinmth4qCSC1UAPEYkTkYY4DW7zPY6pXCIiOHXY21X1Za/jqYqqPq6q0aoai/O+fqmqQXnWqqpHgEMicoE762pgm4chVeUgMFREmrjfi6sJ4sZtH/OBu93HdwMfeRhLpURkFE615mhVPeF1PBVR1c2q2kFVY93fWiIw0P1On7OQSARuY9BDwKc4P6T3VHWrt1FVaDgwAefMeoP7d4PXQdUjPwHeEpFNwEXA896GUzG35PI+sA7YjPN7DaohEURkDrAcuEBEEkVkMvACMFJEduOUal7wMsZSFcT6d6A58F/3t/aap0G6Kog1cPsL3pKQMcaY2hASJQJjjDEVs0RgjDEhzhKBMcaEOEsExhgT4iwRGGNMiLNEYEKWiOS4/2NFZHwNb/uJMtPf1OT2jalJlgiMgVjgrBKBOwhcZU5LBKpaF64INiHKEoExzgVPl7kXFP3cvbfCSyKy2h2n/ocAInKFiHwtIvNxr0gWkQ9FZK17z4D73Xkv4IwYukFE3nLnlZY+xN32FhHZLCLf99n2/3zulfCWezWxMQFX1VmNMaHgMeAXqnoTgHtAz1TVi0WkEbBMREpH/RyIM359gjs9SVWPi0hjYLWIfKCqj4nIQ6p6UTn7ug3niub+QDv3OUvcZQOAPjhDTS/Ducp8aU2/WGPKshKBMWe6FpgoIhtwhgBvC/Rwl63ySQIAPxWRjThj2cf4rFeREcAcVS1W1aPAV8DFPttOVNUSYANOlZUxAWclAmPOJMBPVPXT02aKXIEzdLXv9DXAMFU9ISL/A87lVpL5Po+Lsd+nqSVWIjAGsnEGHiv1KfAjdzhwRKRnBTewaQmku0mgF86tRUsVlj6/jK+B77vtEO1x7pi2qkZehTHVZGccxsAmoNit4pmJc1/jWJzx3gXnrma3lPO8T4AHRGQ7sBOneqjUFGCTiKxT1Tt95s8DhgEbcW7Y8itVPeImEmM8YaOPGmNMiLOqIWOMCXGWCIwxJsRZIjDGmBBnicAYY0KcJQJjjAlxlgiMMSbEWSIwxpgQ9/8BQqcYQvIqaPQAAAAASUVORK5CYII=",
Q
Quleaf 已提交
1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
      "text/plain": [
       "<Figure size 432x288 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    }
   ],
   "source": [
    "# using MNIST\n",
    "\n",
    "# main parameters\n",
    "training_data_num = 500\n",
    "testing_data_num = 200\n",
    "num_qubit = 4\n",
    "\n",
    "# MNIST data with amplitude encoding, resized to 4*4\n",
    "train_dataset = MNIST(mode='train', encoding='amplitude_encoding', num_qubits=num_qubit, classes=[3, 6],\n",
    "                      data_num=training_data_num, need_cropping=True,\n",
    "                      downscaling_method='resize', target_dimension=16, return_state=True)\n",
    "\n",
    "val_dataset = MNIST(mode='test', encoding='amplitude_encoding', num_qubits=num_qubit, classes=[3, 6],\n",
    "                    data_num=testing_data_num, need_cropping=True,\n",
    "                    downscaling_method='resize', target_dimension=16,return_state=True)\n",
    "\n",
    "quantum_train_x, train_y = train_dataset.quantum_image_states, train_dataset.labels\n",
    "quantum_test_x, test_y = val_dataset.quantum_image_states, val_dataset.labels\n",
    "\n",
    "acc = QClassifier2(\n",
    "        quantum_train_x, # Training x\n",
    "        train_y,         # Training y\n",
    "        quantum_test_x,  # Testing x\n",
    "        test_y,          # Testing y\n",
    "        N = num_qubit,   # Number of qubits required\n",
    "        DEPTH = 3,       # Circuit depth\n",
    "        EPOCH = 5,       # Number of training epochs, the total iteration number \"EPOCH * (Ntrain / BATCH)\" is chosen to be about 200\n",
    "        LR = 0.1,        # Set the learning rate\n",
    "        BATCH = 40,      # Batch size during training\n",
    "      )\n",
    "\n",
    "plt.plot(acc)\n",
    "plt.title(\"Classify MNIST 3&6 using amplitude encoding\")\n",
    "plt.xlabel(\"Iteration\")\n",
    "plt.ylabel(\"Testing accuracy\")\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "_______\n",
    "\n",
    "## References\n",
    "\n",
    "\n",
    "[1] Mitarai, Kosuke, et al. Quantum circuit learning. [Physical Review A 98.3 (2018): 032309.](https://arxiv.org/abs/1803.00745)\n",
    "\n",
    "[2] Farhi, Edward, and Hartmut Neven. Classification with quantum neural networks on near term processors. [arXiv preprint arXiv:1802.06002 (2018).](https://arxiv.org/abs/1802.06002)\n",
    "\n",
    "[3] Schuld, Maria, et al. Circuit-centric quantum classifiers. [Physical Review A 101.3 (2020): 032308.](https://arxiv.org/abs/1804.00633)\n",
    "\n",
    "[4] Schuld, Maria. Supervised quantum machine learning models are kernel methods. [arXiv preprint arXiv:2101.11020 (2021).](https://arxiv.org/pdf/2101.11020)"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.8.13"
  },
  "toc": {
   "base_numbering": 1,
   "nav_menu": {},
   "number_sections": true,
   "sideBar": true,
   "skip_h1_title": false,
   "title_cell": "Table of Contents",
   "title_sidebar": "Contents",
   "toc_cell": false,
   "toc_position": {},
   "toc_section_display": true,
   "toc_window_display": true
  }
 },
 "nbformat": 4,
 "nbformat_minor": 4
}