cc_lane_post_processor.cc 51.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/******************************************************************************
 * Copyright 2018 The Apollo Authors. All Rights Reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 *****************************************************************************/

// @brief: CC lane post-processor source file

19 20
#include "modules/perception/obstacle/camera/lane_post_process/cc_lane_post_processor/cc_lane_post_processor.h"

21
#include <algorithm>
22 23 24
#include <cmath>
#include <limits>
#include <numeric>
25 26

#include "modules/common/util/file.h"
27 28
#include "modules/perception/obstacle/camera/lane_post_process/common/util.h"
#include "modules/perception/lib/config_manager/calibration_config_manager.h"
29 30 31 32

namespace apollo {
namespace perception {

D
Dong Li 已提交
33
using apollo::common::util::GetProtoFromFile;
34
using std::pair;
35 36
using std::string;
using std::vector;
37 38 39

bool CCLanePostProcessor::Init() {
  // 1. get model config
40
  CHECK(GetProtoFromFile(FLAGS_cc_lane_post_processor_config_file, &config_));
41 42

  // 2. get parameters
43
  string space_type = config_.space_type();
44 45 46 47 48 49
  if (space_type == "vehicle") {
    options_.space_type = SpaceType::VEHICLE;
  } else if (space_type == "image") {
    AINFO << "using image space to generate lane instances ...";
    options_.space_type = SpaceType::IMAGE;
  } else {
50
    AERROR << "invalid space type" << space_type;
51 52 53 54
    return false;
  }
  options_.frame.space_type = options_.space_type;

55 56
  if (!config_.has_image_width() || !config_.has_image_height()) {
    AERROR << "image width or height not found.";
57 58
    return false;
  }
59 60
  image_width_ = config_.image_width();
  image_height_ = config_.image_height();
61

62
  vector<float> roi;
63 64
  if (config_.roi_size() != 4) {
    AERROR << "roi format error. size = " << config_.roi_size();
65 66
    return false;
  } else {
67 68 69 70
    roi_.x = config_.roi(0);
    roi_.y = config_.roi(1);
    roi_.width = config_.roi(2);
    roi_.height = config_.roi(3);
71
    options_.frame.image_roi = roi_;
72 73
    AINFO << "project ROI = [" << roi_.x << ", " << roi_.y << ", "
           << roi_.width  << ", " << roi_.height
74
           << "]";
75 76
  }

77
  options_.frame.use_non_mask = config_.use_non_mask();
78

79
  if (config_.non_mask_size() % 2 != 0) {
80 81 82
    AERROR << "the number of point coordinate values should be even.";
    return false;
  }
83
  size_t non_mask_polygon_point_num = config_.non_mask_size() / 2;
84 85 86

  non_mask_.reset(new NonMask(non_mask_polygon_point_num));
  for (size_t i = 0; i < non_mask_polygon_point_num; ++i) {
87 88
    non_mask_->AddPolygonPoint(config_.non_mask(2 * i),
                               config_.non_mask(2 * i + 1));
89 90
  }

91 92 93 94 95 96 97
  CalibrationConfigManager *calibration_config_manager =
      Singleton<CalibrationConfigManager>::get();
    const CameraCalibrationPtr camera_calibration =
        calibration_config_manager->get_camera_calibration();

    trans_mat_ = camera_calibration->get_camera2car_homography_mat();

98 99 100
  options_.lane_map_conf_thresh = config_.lane_map_confidence_thresh();
  options_.cc_split_siz = config_.cc_split_siz();
  options_.cc_split_len = config_.cc_split_len();
101 102

  // parameters on generating markers
103 104 105 106 107 108
  options_.frame.min_cc_pixel_num = config_.min_cc_pixel_num();
  options_.frame.min_cc_size = config_.min_cc_size();
  options_.frame.min_y_search_offset =
      (options_.frame.space_type == SpaceType::IMAGE
           ? config_.min_y_search_offset_image()
           : config_.min_y_search_offset());
109 110

  // parameters on marker association
111
  string assoc_method = config_.assoc_method();
112 113 114 115 116 117 118
  if (assoc_method == "greedy_group_connect") {
    options_.frame.assoc_param.method = AssociationMethod::GREEDY_GROUP_CONNECT;
  } else {
    AERROR << "invalid marker association method." << assoc_method;
    return false;
  }

119 120 121 122 123
  options_.frame.assoc_param.min_distance =
      (options_.frame.space_type == SpaceType::IMAGE
           ? config_.assoc_min_distance_image()
           : config_.assoc_min_distance());
  ADEBUG << "assoc_min_distance = " << options_.frame.assoc_param.min_distance;
124

125 126 127 128 129
  options_.frame.assoc_param.max_distance =
      (options_.frame.space_type == SpaceType::IMAGE
           ? config_.assoc_max_distance_image()
           : config_.assoc_max_distance());
  ADEBUG << "assoc_max_distance = " << options_.frame.assoc_param.max_distance;
130

131 132 133 134 135 136 137 138 139 140
  options_.frame.assoc_param.distance_weight = config_.assoc_distance_weight();
  ADEBUG << "assoc_distance_weight = "
         << options_.frame.assoc_param.distance_weight;

  options_.frame.assoc_param.max_deviation_angle =
      (options_.frame.space_type == SpaceType::IMAGE
           ? config_.assoc_max_deviation_angle_image()
           : config_.assoc_max_deviation_angle());
  ADEBUG << "assoc_max_deviation_angle = "
         << options_.frame.assoc_param.max_deviation_angle;
141 142
  options_.frame.assoc_param.max_deviation_angle *= (M_PI / 180.0);

143 144 145 146 147 148 149 150 151 152 153
  options_.frame.assoc_param.deviation_angle_weight =
      config_.assoc_deviation_angle_weight();
  ADEBUG << "assoc_deviation_angle_weight = "
         << options_.frame.assoc_param.deviation_angle_weight;

  options_.frame.assoc_param.max_relative_orie =
      (options_.frame.space_type == SpaceType::IMAGE
           ? config_.assoc_max_relative_orie_image()
           : config_.assoc_max_relative_orie());
  ADEBUG << "assoc_max_relative_orie = "
         << options_.frame.assoc_param.max_relative_orie;
154 155
  options_.frame.assoc_param.max_relative_orie *= (M_PI / 180.0);

156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
  options_.frame.assoc_param.relative_orie_weight =
      config_.assoc_relative_orie_weight();
  ADEBUG << "assoc_relative_orie_weight = "
         << options_.frame.assoc_param.relative_orie_weight;

  options_.frame.assoc_param.max_departure_distance =
      (options_.frame.space_type == SpaceType::IMAGE
           ? config_.assoc_max_departure_distance_image()
           : config_.assoc_max_departure_distance());
  ADEBUG << "assoc_max_departure_distance = "
         << options_.frame.assoc_param.max_departure_distance;

  options_.frame.assoc_param.departure_distance_weight =
      config_.assoc_departure_distance_weight();
  ADEBUG << "assoc_departure_distance_weight = "
         << options_.frame.assoc_param.departure_distance_weight;

  options_.frame.assoc_param.min_orientation_estimation_size =
      (options_.frame.space_type == SpaceType::IMAGE
           ? config_.assoc_min_orientation_estimation_size_image()
           : config_.assoc_min_orientation_estimation_size());
  ADEBUG << "assoc_min_orientation_estimation_size = "
         << options_.frame.assoc_param.min_orientation_estimation_size;
179 180 181

  if (options_.frame.assoc_param.method ==
      AssociationMethod::GREEDY_GROUP_CONNECT) {
182 183
    options_.frame.group_param.max_group_prediction_marker_num =
        config_.max_group_prediction_marker_num();
184
  } else {
185
    AERROR << "invalid marker association method.";
186 187
    return false;
  }
188 189
  options_.frame.orientation_estimation_skip_marker_num =
      config_.orientation_estimation_skip_marker_num();
190 191

  // parameters on finding lane objects
192 193 194 195 196 197 198 199 200
  options_.frame.lane_interval_distance = config_.lane_interval_distance();
  options_.frame.min_instance_size_prefiltered =
      (options_.frame.space_type == SpaceType::IMAGE
           ? config_.min_instance_size_prefiltered_image()
           : config_.min_instance_size_prefiltered());
  options_.frame.max_size_to_fit_straight_line =
      (options_.frame.space_type == SpaceType::IMAGE
           ? config_.max_size_to_fit_straight_line_image()
           : config_.max_size_to_fit_straight_line());
201 202

  // 3. initialize projector
203 204 205
  max_distance_to_see_ = config_.max_distance_to_see_for_transformer();
  ADEBUG << "initial max_distance_to_see: " << max_distance_to_see_
         << " (meters)";
206 207 208 209 210 211 212 213

  if (options_.space_type == SpaceType::VEHICLE) {
    projector_.reset(new Projector<ScalarType>());
    projector_->Init(roi_, max_distance_to_see_, vis_);
    is_x_longitude_ = true;
  } else if (options_.space_type == SpaceType::IMAGE) {
    is_x_longitude_ = false;
  } else {
214
    AERROR << "invalid space type" << space_type;
215 216 217 218 219
    return false;
  }

  time_stamp_ = 0.0;
  frame_id_ = 0;
220

221 222
  int lane_map_width = config_.lane_map_width();
  int lane_map_height = config_.lane_map_height();
223 224 225 226
#if CUDA_CC
  cc_generator_.reset(
      new ConnectedComponentGeneratorGPU(image_width_, image_height_, roi_));
#else
227 228
  cc_generator_.reset(new ConnectedComponentGenerator(
      lane_map_width, lane_map_height,
229
      cv::Rect(0, 0, lane_map_width, lane_map_height)));
230 231
#endif

232 233
  scale_ = config_.lane_map_scale();
  start_y_pos_ = config_.start_y_pos();
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
  cur_frame_.reset(new LaneFrame);

  is_init_ = true;
  return true;
}

bool CCLanePostProcessor::AddInstanceIntoLaneObject(
    const LaneInstance &instance, LaneObject *lane_object) {
  if (lane_object == nullptr) {
    AERROR << "lane object is a null pointer";
    return false;
  }

  if (lane_object->pos.empty()) {
    lane_object->pos.reserve(20);
    lane_object->orie.reserve(20);
    lane_object->image_pos.reserve(20);
    lane_object->confidence.reserve(20);
  }

  auto graph = cur_frame_->graph(instance.graph_id);

  int i_prev = -1;
  for (size_t j = 0; j < graph->size(); ++j) {
    int i = graph->at(j).first;
    if (cur_frame_->marker(i)->shape_type != MarkerShapeType::POINT) {
      if (i_prev < 0 ||
          cur_frame_->marker(i)->cc_id != cur_frame_->marker(i_prev)->cc_id) {
        lane_object->pos.push_back(cur_frame_->marker(i)->start_pos);
        lane_object->orie.push_back(cur_frame_->marker(i)->orie);
        lane_object->image_pos.push_back(
            cur_frame_->marker(i)->image_start_pos);
        lane_object->confidence.push_back(cur_frame_->marker(i)->confidence);
        lane_object->longitude_start =
            std::min(lane_object->pos.back().x(), lane_object->longitude_start);
        lane_object->longitude_end =
            std::max(lane_object->pos.back().x(), lane_object->longitude_end);
        lane_object->point_num++;
      }
    }

    lane_object->pos.push_back(cur_frame_->marker(i)->pos);
    lane_object->orie.push_back(cur_frame_->marker(i)->orie);
    lane_object->image_pos.push_back(cur_frame_->marker(i)->image_pos);
    lane_object->confidence.push_back(cur_frame_->marker(i)->confidence);
    lane_object->longitude_start =
        std::min(lane_object->pos.back().x(), lane_object->longitude_start);
    lane_object->longitude_end =
        std::max(lane_object->pos.back().x(), lane_object->longitude_end);
    lane_object->point_num++;
    i_prev = i;
  }

  if (lane_object->point_num != lane_object->pos.size() ||
      lane_object->point_num != lane_object->orie.size() ||
      lane_object->point_num != lane_object->image_pos.size() ||
      lane_object->point_num != lane_object->confidence.size()) {
    AERROR << "the number of points in lane object does not match.";
    return false;
  }

  if (lane_object->point_num < 2) {
    AERROR << "the number of points in lane object should be no less than 2";
    return false;
  }

  // fit polynomial model and compute lateral distance for lane object
  if (lane_object->point_num < 3 ||
      lane_object->longitude_end - lane_object->longitude_start <
          options_.frame.max_size_to_fit_straight_line) {
    // fit a 1st-order polynomial curve (straight line)
    lane_object->order = 1;
  } else {
    // fit a 2nd-order polynomial curve;
    lane_object->order = 2;
  }

  if (!PolyFit(lane_object->pos, lane_object->order, &(lane_object->model))) {
    AERROR << "failed to fit " << lane_object->order
           << " order polynomial curve.";
  }
315
  // Option 1: Use C0 for lateral distance
X
xiaoshuliu 已提交
316 317
  // lane_object->lateral_distance = lane_object->model(0);

318
  // Option 2: Use y-value of closest point.
319
  // lane_object->lateral_distance = lane_object->pos[0].y();
X
xiaoshuliu 已提交
320

X
xiaoshuliu 已提交
321
  // Option 3: Use value at x=3
X
xiaoshuliu 已提交
322 323
  lane_object->lateral_distance = PolyEval(static_cast<float>(3.0),
              lane_object->order, lane_object->model);
324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343

  return true;
}

bool CCLanePostProcessor::AddInstanceIntoLaneObjectImage(
    const LaneInstance &instance, LaneObject *lane_object) {
  if (lane_object == nullptr) {
    AERROR << "lane object is a null pointer";
    return false;
  }

  if (lane_object->pos.empty()) {
    lane_object->pos.reserve(20);
    lane_object->orie.reserve(20);
    lane_object->image_pos.reserve(20);
    lane_object->confidence.reserve(20);
  }

  auto graph = cur_frame_->graph(instance.graph_id);

344
  //  ADEBUG << "show points for lane object: ";
345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365

  ScalarType y_offset = static_cast<ScalarType>(image_height_ - 1);

  int i_prev = -1;
  for (size_t j = 0; j < graph->size(); ++j) {
    int i = graph->at(j).first;
    if (cur_frame_->marker(i)->shape_type != MarkerShapeType::POINT) {
      if (i_prev < 0 ||
          cur_frame_->marker(i)->cc_id != cur_frame_->marker(i_prev)->cc_id) {
        lane_object->pos.push_back(cur_frame_->marker(i)->start_pos);
        lane_object->pos.back()(1) = y_offset - lane_object->pos.back()(1);
        lane_object->orie.push_back(cur_frame_->marker(i)->orie);
        lane_object->orie.back()(1) = -lane_object->orie.back()(1);
        lane_object->image_pos.push_back(
            cur_frame_->marker(i)->image_start_pos);
        lane_object->confidence.push_back(cur_frame_->marker(i)->confidence);
        lane_object->longitude_start =
            std::min(lane_object->pos.back().y(), lane_object->longitude_start);
        lane_object->longitude_end =
            std::max(lane_object->pos.back().y(), lane_object->longitude_end);

L
lichongchong16 已提交
366 367 368 369 370
        ADEBUG << " point " << lane_object->point_num << " = "
               << "(" << lane_object->pos.back()(0) << ", "
               << lane_object->pos.back()(1) << "), "
               << "(" << lane_object->image_pos.back()(0) << ", "
               << lane_object->image_pos.back()(1) << ")";
371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386

        lane_object->point_num++;
      }
    }

    lane_object->pos.push_back(cur_frame_->marker(i)->pos);
    lane_object->pos.back()(1) = y_offset - lane_object->pos.back()(1);
    lane_object->orie.push_back(cur_frame_->marker(i)->orie);
    lane_object->orie.back()(1) = -lane_object->orie.back()(1);
    lane_object->image_pos.push_back(cur_frame_->marker(i)->image_pos);
    lane_object->confidence.push_back(cur_frame_->marker(i)->confidence);
    lane_object->longitude_start =
        std::min(lane_object->pos.back().y(), lane_object->longitude_start);
    lane_object->longitude_end =
        std::max(lane_object->pos.back().y(), lane_object->longitude_end);

L
lichongchong16 已提交
387 388 389 390 391
    ADEBUG << " point " << lane_object->point_num << " = "
           << "(" << lane_object->pos.back()(0) << ", "
           << lane_object->pos.back()(1) << "), "
           << "(" << lane_object->image_pos.back()(0) << ", "
           << lane_object->image_pos.back()(1) << ")";
392 393 394 395

    lane_object->point_num++;
    i_prev = i;
  }
L
lichongchong16 已提交
396 397
  ADEBUG << "longitude_start = " << lane_object->longitude_start;
  ADEBUG << "longitude_end = " << lane_object->longitude_end;
398 399 400 401 402 403 404 405 406 407 408 409 410 411 412

  if (lane_object->point_num != lane_object->pos.size() ||
      lane_object->point_num != lane_object->orie.size() ||
      lane_object->point_num != lane_object->image_pos.size() ||
      lane_object->point_num != lane_object->confidence.size()) {
    AERROR << "the number of points in lane object does not match.";
    return false;
  }

  if (lane_object->point_num < 2) {
    AERROR << "the number of points in lane object should be no less than 2";
    return false;
  }

  // fit polynomial model and compute lateral distance for lane object
L
lichongchong16 已提交
413 414
  ADEBUG << "max_size_to_fit_straight_line = "
         << options_.frame.max_size_to_fit_straight_line;
415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
  if (lane_object->point_num < 3 ||
      lane_object->longitude_end - lane_object->longitude_start <
          options_.frame.max_size_to_fit_straight_line) {
    // fit a 1st-order polynomial curve (straight line)
    lane_object->order = 1;
  } else {
    // fit a 2nd-order polynomial curve;
    lane_object->order = 2;
  }

  if (!PolyFit(lane_object->pos, lane_object->order, &(lane_object->model),
               false)) {
    AERROR << "failed to fit " << lane_object->order
           << " order polynomial curve";
  }

431
  // Option 1: Use C0 for lateral distance
X
xiaoshuliu 已提交
432
  // lane_object->lateral_distance = lane_object->model(0);
433
  // Option 2: Use y-value of closest point.
434
  // lane_object->lateral_distance = lane_object->pos[0].y();
435

X
xiaoshuliu 已提交
436
  // Option 3: Use value at x=3
X
xiaoshuliu 已提交
437 438
  lane_object->lateral_distance = PolyEval(static_cast<float>(3.0),
                            lane_object->order, lane_object->model);
X
xiaoshuliu 已提交
439

440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
  return true;
}

bool CCLanePostProcessor::GenerateLaneInstances(const cv::Mat &lane_map) {
  if (!is_init_) {
    AERROR << "the lane post-processor is not initialized.";
    return false;
  }

  if (lane_map.empty()) {
    AERROR << "input lane map is empty.";
    return false;
  }

  // 1. get binary lane label mask
  cv::Mat lane_mask;
  if (lane_map.type() == CV_32FC1) {
    // confidence heatmap
L
lichongchong16 已提交
458 459 460
    ADEBUG << "confidence threshold = " << options_.lane_map_conf_thresh;
    ADEBUG << "lane map size = "
           << "(" << lane_map.cols << ", " << lane_map.rows << ")";
461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481
    lane_mask.create(lane_map.rows, lane_map.cols, CV_8UC1);
    lane_mask.setTo(cv::Scalar(0));
    for (int h = 0; h < lane_mask.rows; ++h) {
      for (int w = 0; w < lane_mask.cols; ++w) {
        if (lane_map.at<float>(h, w) >= options_.lane_map_conf_thresh) {
          lane_mask.at<unsigned char>(h, w) = 1;
        }
      }
    }
  } else if (lane_map.type() == CV_8UC1) {
    // lane label map
    lane_mask = lane_map;
  } else {
    AERROR << "invalid input lane map type: " << lane_map.type();
    return false;
  }

  // 2. find connected components from lane label mask
  vector<ConnectedComponentPtr> cc_list;
  cc_generator_->FindConnectedComponents(lane_mask, &cc_list);

L
lichongchong16 已提交
482
  ADEBUG << "number of connected components = " << cc_list.size();
483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502

  // 3. split CC and find inner edges
  int tot_inner_edge_count = 0;
  for (int i = 0; i < static_cast<int>(cc_list.size()); ++i) {
    auto it_cc = cc_list[i];
    it_cc->FindBboxPixels();
    it_cc->FindVertices();
    it_cc->FindEdges();
    if (it_cc->DetermineSplit(options_.cc_split_siz) !=
        ConnectedComponent::BoundingBoxSplitType::NONE) {
      it_cc->FindContourForSplit();
      it_cc->SplitContour(options_.cc_split_len);
    }
    tot_inner_edge_count += static_cast<int>(it_cc->GetInnerEdges()->size());
  }

  /// 4. do lane marker association and determine lane instance labels
  cur_frame_.reset(new LaneFrame);

  if (options_.frame.space_type == SpaceType::IMAGE) {
503
    cur_frame_->Init(cc_list, non_mask_, options_.frame, scale_, start_y_pos_);
504
  } else if (options_.frame.space_type == SpaceType::VEHICLE) {
505 506
    cur_frame_->Init(cc_list, non_mask_, projector_, options_.frame, scale_,
                     start_y_pos_);
507 508 509 510 511 512 513
  } else {
    AERROR << "unknown space type: " << options_.frame.space_type;
    return false;
  }

  cur_frame_->Process(cur_lane_instances_);

514
  //  ADEBUG << "number of lane instances = " << cur_lane_instances_->size();
515 516 517 518 519 520

  return true;
}

bool CCLanePostProcessor::Process(const cv::Mat &lane_map,
                                  const CameraLanePostProcessOptions &options,
521
                                  LaneObjectsPtr *lane_objects) {
522 523 524 525 526 527 528 529 530 531
  if (!is_init_) {
    AERROR << "lane post-processor is not initialized";
    return false;
  }

  if (lane_map.empty()) {
    AERROR << "input lane map is empty";
    return false;
  }

532 533
  if (options.use_lane_history &&
      (!use_history_ || time_stamp_ > options.timestamp)) {
534 535
    InitLaneHistory();
  }
536 537

  time_stamp_ = options.timestamp;
538

539
  if (FLAGS_use_whole_lane_line) {
Z
zhujun08 已提交
540
    lane_objects->reset(new LaneObjects());
541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604
    (*lane_objects)->reserve(13);

    CalibrationConfigManager *calibration_config_manager =
      Singleton<CalibrationConfigManager>::get();
    const CameraCalibrationPtr camera_calibration =
        calibration_config_manager->get_camera_calibration();

    trans_mat_ = camera_calibration->get_camera2car_homography_mat();

    int roi_width = roi_.width;

    // 1. Sample points on lane_map and project them onto world coordinate
    int y = lane_map.rows*0.9 - 1;
    int step_y = (y - 40)*(y - 40)/6400 + 1;

    xy_points.clear();
    xy_points.resize(13);
    uv_points.clear();
    uv_points.resize(13);

    while (y > 0) {
      int x = 1;
      while (x < lane_map.cols - 1) {
        int value = round(lane_map.at<float>(y, x));
        // lane on left
        if ((value > 0 && value < 5) || value == 11) {
          // right edge (inner) of the lane
          if (value != round(lane_map.at<float>(y, x+1))) {
            Eigen::Matrix<double, 3, 1> img_point(x*roi_width/lane_map.cols,
                                    y*roi_height/lane_map.rows+roi_start, 1.0);
            Eigen::Matrix<double, 3, 1> xy_p = trans_mat_ * img_point;
            Eigen::Matrix<double, 2, 1> xy_point;
            Eigen::Matrix<double, 2, 1> uv_point;
            if (std::abs(xy_p(2)) < 1e-6) continue;
            xy_point << xy_p(0) / xy_p(2), xy_p(1) / xy_p(2);
            if (xy_point(0) < 0 || xy_point(0) > 500 || abs(xy_point(1)) > 25) {
              ++x;
              continue;
            }
            uv_point << static_cast<double>(x*roi_width/lane_map.cols),
                      static_cast<double>(y*roi_height/lane_map.rows+roi_start);
            xy_points[value].push_back(xy_point);
            uv_points[value].push_back(uv_point);
          }
        } else if (value >= 5) {
          // left edge (inner) of the lane
          if (value != round(lane_map.at<float>(y, x-1))) {
            Eigen::Matrix<double, 3, 1> img_point(x*roi_width/lane_map.cols,
                                    y*roi_height/lane_map.rows+roi_start, 1.0);
            Eigen::Matrix<double, 3, 1> xy_p = trans_mat_ * img_point;
            Eigen::Matrix<double, 2, 1> xy_point;
            Eigen::Matrix<double, 2, 1> uv_point;
            xy_point << xy_p(0) / xy_p(2), xy_p(1) / xy_p(2);
            if (xy_point(0) < 0 || xy_point(0) > 500 || abs(xy_point(1)) > 25) {
              ++x;
              continue;
            }
            uv_point << static_cast<double>(x*roi_width/lane_map.cols),
                      static_cast<double>(y*roi_height/lane_map.rows+roi_start);
            xy_points[value].push_back(xy_point);
            uv_points[value].push_back(uv_point);
          }
        }
        ++x;
605
      }
606 607 608
      step_y = (y - 45)*(y - 45)/6400 + 1;
      y -= step_y;
    }
609

610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643
    // 2. Remove outliers and Do a cubic fitting
    std::vector<Eigen::Matrix<double, 4, 1>> coeffs;
    std::vector<Eigen::Matrix<double, 4, 1>> img_coeffs;
    coeffs.resize(13);
    img_coeffs.resize(13);
    for (int i = 1; i < 13; ++i) {
      if (xy_points[i].size() < minNumPoints) continue;
      Eigen::Matrix<double, 4, 1> coeff;

      auto xy_points_sort = xy_points[i];
      std::sort(xy_points_sort.begin(), xy_points_sort.end(),
        [](const Eigen::Matrix<double, 2, 1>& lhs,
        const Eigen::Matrix<double, 2, 1>& rhs) {
         return lhs(1) < rhs(1);
        });

      // use iqr method to remove outliers
      float max_y = xy_points_sort.back()(1);
      float min_y = xy_points_sort.front()(1);
      float q1 = xy_points_sort[xy_points_sort.size()/4+1](1);
      float q3 = xy_points_sort[xy_points_sort.size()*3/4-1](1);
      float iqr = q3 - q1;
      for (vector<Eigen::Matrix<double, 2, 1>>::iterator
            it=xy_points[i].begin(); it != xy_points[i].end();) {
        if ((*it)(1) < q1 - iqr || (*it)(1) > q3 + iqr)
          it = xy_points[i].erase(it);
        else
          ++it;
      }
      // do cubic fitting
      if (xy_points[i].size() < minNumPoints) continue;
      if (std::abs(max_y - min_y) > 0.2) {
        if (IterativeFitting(&xy_points[i], 3, &coeff, true, 2, 0.25))
          coeffs[i] = coeff;
644
      } else {
645 646
        if (IterativeFitting(&xy_points[i], 1, &coeff, true, 2, 0.25))
          coeffs[i] = coeff;
647
      }
648 649 650 651 652 653 654 655 656 657 658 659
    }

    // 3. Write values into lane_objects
    vector<float> c0s(13, 0);
    for (int i = 1; i < 13; ++i) {
      if (xy_points[i].size() < minNumPoints) continue;
      c0s[i] = GetPolyValue(static_cast<float>(coeffs[i](3)),
                            static_cast<float>(coeffs[i](2)),
                            static_cast<float>(coeffs[i](1)),
                            static_cast<float>(coeffs[i](0)),
                            static_cast<float>(3.0));
    }
660

661 662 663 664 665 666 667 668 669 670 671
    // [1] determine lane spatial tag in special cases
    if (xy_points[4].size() < minNumPoints &&
        xy_points[5].size() >= minNumPoints) {
      std::swap(xy_points[4], xy_points[5]);
      std::swap(coeffs[4], coeffs[5]);
      std::swap(c0s[4], c0s[5]);
    } else if (xy_points[6].size() < minNumPoints &&
                xy_points[5].size() >= minNumPoints) {
      std::swap(xy_points[6], xy_points[5]);
      std::swap(coeffs[6], coeffs[5]);
      std::swap(c0s[6], c0s[5]);
672 673
    }

674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729
    if (xy_points[4].size() < minNumPoints &&
        xy_points[11].size() >= minNumPoints) {
      // use left lane boundary as the right most missing left lane,
      // only condiser two lanes
      std::swap(xy_points[4], xy_points[11]);
      std::swap(coeffs[4], coeffs[11]);
      std::swap(c0s[4], c0s[11]);
    } else if (xy_points[6].size() < minNumPoints &&
                xy_points[12].size() >= minNumPoints) {
      // use right lane boundary as the left most missing right lane,
      // only condiser two lanes
      std::swap(xy_points[6], xy_points[12]);
      std::swap(coeffs[6], coeffs[12]);
      std::swap(c0s[6], c0s[12]);
    }

    for (int i = 1; i < 13; ++i) {
      LaneObject cur_object;
      if (xy_points[i].size() < minNumPoints) continue;
      cur_object.newSpatial = i;

      // [2] set old spatial label, for other modules
      if (i == 6) cur_object.spatial = SpatialLabelType::R_0;
      else if (i == 7) cur_object.spatial = SpatialLabelType::R_1;
      else if (i == 8) cur_object.spatial = SpatialLabelType::R_2;
      else if (i == 4) cur_object.spatial = SpatialLabelType::L_0;
      else if (i == 3) cur_object.spatial = SpatialLabelType::L_1;
      else if (i == 2) cur_object.spatial = SpatialLabelType::L_2;
      else
        cur_object.spatial = SpatialLabelType::L_UNKNOWN;

      // [3] determine which lines are valid according to the y value at x = 3
      if (i < 5 && c0s[i] < c0s[i+1]) continue;
      else if (i > 5 && i < 10 && c0s[i] > c0s[i-1]) continue;
      if (i == 11 || i == 12) {
        std::sort(c0s.begin(), c0s.begin() + 10);
        if (c0s[i] > c0s[0] && i == 12) continue;
        else if (c0s[i] < c0s[9] && i == 11) continue;
      }

      // [4] write values
      cur_object.longitude_start = xy_points[i].front()(0);
      cur_object.longitude_end = xy_points[i].back()(0);
      if (cur_object.longitude_end - cur_object.longitude_start < 5) continue;
      cur_object.order = 3;

      for (size_t j = 0; j < xy_points[i].size(); ++j) {
        cur_object.pos.push_back(xy_points[i][j].cast<ScalarType>());
        cur_object.pos_curve = {static_cast<float>(xy_points[i].front()(0)),
                                static_cast<float>(xy_points[i].back()(0)),
                                static_cast<float>(coeffs[i](3)),
                                static_cast<float>(coeffs[i](2)),
                                static_cast<float>(coeffs[i](1)),
                                static_cast<float>(coeffs[i](0))};
        cur_object.confidence.push_back(1);
      }
730 731 732 733 734 735
      PolyModel p_model;
      p_model << static_cast<ScalarType>(coeffs[i](0)),
                 static_cast<ScalarType>(coeffs[i](1)),
                 static_cast<ScalarType>(coeffs[i](2)),
                 static_cast<ScalarType>(coeffs[i](3));
      cur_object.model = p_model;
736 737
      (*lane_objects)->push_back(cur_object);
    }
738
  } else {
739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788
    cur_lane_instances_.reset(new vector<LaneInstance>);
    if (!GenerateLaneInstances(lane_map)) {
      AERROR << "failed to compute lane instances.";
      return false;
    }
    std::sort(cur_lane_instances_->begin(), cur_lane_instances_->end(),
              LaneInstance::CompareSiz);

    /// generate lane objects
    if (options_.space_type == SpaceType::IMAGE) {
      /// for image space coordinate
      ScalarType x_center = static_cast<ScalarType>(roi_.x + roi_.width / 2);

      lane_objects->reset(new LaneObjects());
      (*lane_objects)->reserve(2);
      bool is_left_lane_found = false;
      bool is_right_lane_found = false;
      for (auto it = cur_lane_instances_->begin();
           it != cur_lane_instances_->end(); ++it) {
        ADEBUG << "for lane instance " << it - cur_lane_instances_->begin();

        if (is_left_lane_found && is_right_lane_found) {
          break;
        }

        LaneObject cur_object;
        AddInstanceIntoLaneObjectImage(*it, &cur_object);

        if (cur_object.lateral_distance <= x_center) {
          // for left lane
          if (is_left_lane_found) {
            continue;
          }
          (*lane_objects)->push_back(cur_object);
          (*lane_objects)->back().spatial = SpatialLabelType::L_0;
          is_left_lane_found = true;
        } else {
          // for right lane
          if (is_right_lane_found) {
            continue;
          }
          (*lane_objects)->push_back(cur_object);
          (*lane_objects)->back().spatial = SpatialLabelType::R_0;
          is_right_lane_found = true;
        }

        ADEBUG << " lane object " << (*lane_objects)->back().GetSpatialLabel()
               << " has " << (*lane_objects)->back().pos.size() << " points: "
               << "lateral distance = "
               << (*lane_objects)->back().lateral_distance;
789 790
      }

791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809
    } else {
      /// for vehicle space coordinate
      // select lane instances with non-overlap assumption
      // ADEBUG << "generate lane objects ...";
      lane_objects->reset(new LaneObjects());
      (*lane_objects)->reserve(2 * MAX_LANE_SPATIAL_LABELS);
      vector<pair<ScalarType, int>> origin_lateral_dist_object_id;
      origin_lateral_dist_object_id.reserve(2 * MAX_LANE_SPATIAL_LABELS);
      int count_lane_objects = 0;
      ADEBUG << "cur_lane_instances_->size(): " << cur_lane_instances_->size();
      for (auto it = cur_lane_instances_->begin();
           it != cur_lane_instances_->end(); ++it) {
        ADEBUG << "for lane instance " << it - cur_lane_instances_->begin();

        // ignore current instance if it is too small
        if (it->siz < options_.frame.min_instance_size_prefiltered) {
          ADEBUG << "current lane instance is too small: " << it->siz;
          continue;
        }
810

811 812
        LaneObject cur_object;
        AddInstanceIntoLaneObject(*it, &cur_object);
813

814 815 816 817 818 819 820 821 822
        if ((*lane_objects)->empty()) {
          // create a new lane object

          (*lane_objects)->push_back(cur_object);
          ADEBUG << " lane object XXX has"
                 << (*lane_objects)->at(count_lane_objects).pos.size()
                 << " points, lateral distance="
                 << (*lane_objects)->at(count_lane_objects).lateral_distance;
          origin_lateral_dist_object_id.push_back(
823
            std::make_pair(cur_object.lateral_distance, count_lane_objects++));
824 825 826
          ADEBUG << "generate a new lane object from instance";
          continue;
        }
827

828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858
        // ignore current instance if it crosses over any existing groups
        bool is_cross_over = false;
        vector<pair<ScalarType, ScalarType>> lateral_distances(
            count_lane_objects);
        size_t cross_over_lane_object_id = 0;
        for (size_t k = 0; k < (*lane_objects)->size(); ++k) {
          // min distance to instance group
          lateral_distances[k].first = std::numeric_limits<ScalarType>::max();
          // max distance to instance group
          lateral_distances[k].second = -std::numeric_limits<ScalarType>::max();

          // determine whether cross over or not
          for (size_t i = 0; i < cur_object.pos.size(); ++i) {
            ScalarType delta_y =
                cur_object.pos[i].y() - PolyEval(cur_object.pos[i].x(),
                                                 (*lane_objects)->at(k).order,
                                                 (*lane_objects)->at(k).model);
            // lateral_distances[k].first keeps min delta_y of lane line points
            // from the fitted curve
            lateral_distances[k].first =
                std::min(lateral_distances[k].first, delta_y);
            // lateral_distances[k].first keeps max delta_y of lane line points
            // from the fitted curve
            lateral_distances[k].second =
                std::max(lateral_distances[k].second, delta_y);
            if (lateral_distances[k].first * lateral_distances[k].second < 0) {
              is_cross_over = true;
            }
            if (is_cross_over) {
              break;
            }
859
          }
860

861
          if (is_cross_over) {
862
            cross_over_lane_object_id = k;
863 864 865 866
            break;
          }
        }
        if (is_cross_over) {
867 868 869 870 871 872 873
          ADEBUG << "Lane " << cross_over_lane_object_id
                 << "crosses over cur_lane. Eliminated.";
          for (size_t i = 0; i < cur_object.pos.size(); ++i) {
            ADEBUG << "[" << cur_object.pos[i].x() << ", "
                   << cur_object.pos[i].y() << "]";
          }
          continue;
874
        }
875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895

        // search the left-most lane w.r.t. current instance so far
        int left_lane_id = -1;
        ScalarType left_lane_dist = -std::numeric_limits<ScalarType>::max();
        for (int k = 0; k < count_lane_objects; ++k) {
          if (lateral_distances[k].second <= 0) {
            if (lateral_distances[k].second > left_lane_dist) {
              left_lane_dist = lateral_distances[k].second;
              left_lane_id = k;
            }
          }
        }
        if ((left_lane_id >= 0) &&
            (origin_lateral_dist_object_id.at(left_lane_id).first -
                 cur_object.lateral_distance <
             MIN_BETWEEN_LANE_DISTANCE)) {
          ADEBUG << "too close to left lane object (" << left_lane_id << "): "
                 << origin_lateral_dist_object_id.at(left_lane_id).first -
                        cur_object.lateral_distance
                 << "(" << MIN_BETWEEN_LANE_DISTANCE << ")";
          continue;
896 897
        }

898 899 900 901 902 903 904 905 906
        // search the right-most lane w.r.t. current instance so far
        int right_lane_id = -1;
        ScalarType right_lane_dist = std::numeric_limits<ScalarType>::max();
        for (int k = 0; k < count_lane_objects; ++k) {
          if (lateral_distances[k].first > 0) {
            if (lateral_distances[k].first < right_lane_dist) {
              right_lane_dist = lateral_distances[k].first;
              right_lane_id = k;
            }
907 908
          }
        }
909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927
        if ((right_lane_id >= 0) &&
            (cur_object.lateral_distance -
                 origin_lateral_dist_object_id.at(right_lane_id).first <
             MIN_BETWEEN_LANE_DISTANCE)) {
          ADEBUG << "too close to right lane object (" << right_lane_id << "): "
                 << origin_lateral_dist_object_id.at(right_lane_id).first -
                        cur_object.lateral_distance
                 << "(" << MIN_BETWEEN_LANE_DISTANCE << ")";
          continue;
        }
        // accept the new lane object
        (*lane_objects)->push_back(cur_object);
        ADEBUG << " lane object XXX has"
               << (*lane_objects)->at(count_lane_objects).pos.size()
               << " points, lateral distance="
               << (*lane_objects)->at(count_lane_objects).lateral_distance;
        origin_lateral_dist_object_id.push_back(
            std::make_pair(cur_object.lateral_distance, count_lane_objects++));
        //      ADEBUG << "generate a new lane object from instance.";
928 929
      }

930 931 932 933 934 935 936 937 938 939
      // determine spatial label of lane object
      // Sort lanes with C0
      std::sort(origin_lateral_dist_object_id.begin(),
                origin_lateral_dist_object_id.end(),
                [](const pair<ScalarType, int> &a,
                   const pair<ScalarType, int> &b) {
                  return a.first > b.first;
                });

      int index_closest_left = -1;
940
      for (int k = 0; k < count_lane_objects; ++k) {
941 942 943 944
        if (origin_lateral_dist_object_id[k].first >= 0) {
          index_closest_left = k;
        } else {
          break;
945 946
        }
      }
947

948 949 950
      std::vector<bool> b_left_index_list(MAX_LANE_SPATIAL_LABELS, false);
      vector<int> valid_lane_objects;
      valid_lane_objects.reserve((*lane_objects)->size());
951

952 953 954 955 956 957 958 959 960
      // for left-side lanes
      for (int spatial_index = 0; spatial_index <= index_closest_left;
           ++spatial_index) {
        if (spatial_index >= MAX_LANE_SPATIAL_LABELS) {
          break;
        }
        int i_l = index_closest_left - spatial_index;
        int object_id = origin_lateral_dist_object_id.at(i_l).second;
        float lateral_distance = origin_lateral_dist_object_id.at(i_l).first;
961

962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977
        int index = floor(lateral_distance * INVERSE_AVEAGE_LANE_WIDTH_METER);
        if (index < 0 || index > MAX_LANE_SPATIAL_LABELS - 1) {
          continue;
        }
        if (b_left_index_list[index] == true) {
          continue;
        }
        b_left_index_list[index] = true;
        (*lane_objects)->at(object_id).spatial =
            static_cast<SpatialLabelType>(index);
        valid_lane_objects.push_back(object_id);
        ADEBUG << " lane object "
               << (*lane_objects)->at(object_id).GetSpatialLabel() << " has "
               << (*lane_objects)->at(object_id).pos.size() << " points: "
               << "lateral distance="
               << (*lane_objects)->at(object_id).lateral_distance;
978
      }
979 980 981 982 983 984 985 986 987 988
      // for right-side lanes
      std::vector<bool> b_right_index_list(MAX_LANE_SPATIAL_LABELS, false);
      int i_r = index_closest_left + 1;
      for (int spatial_index = 0; spatial_index < MAX_LANE_SPATIAL_LABELS;
           ++spatial_index, ++i_r) {
        if (i_r >= count_lane_objects) {
          break;
        }
        int object_id = origin_lateral_dist_object_id.at(i_r).second;
        float lateral_distance = -origin_lateral_dist_object_id.at(i_r).first;
989

990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006
        int index = floor(lateral_distance * INVERSE_AVEAGE_LANE_WIDTH_METER);
        if (index < 0 || index > MAX_LANE_SPATIAL_LABELS - 1) {
          continue;
        }
        if (b_right_index_list[index] == true) {
          continue;
        }
        b_right_index_list[index] = true;
        (*lane_objects)->at(object_id).spatial =
            static_cast<SpatialLabelType>(MAX_LANE_SPATIAL_LABELS + index);

        valid_lane_objects.push_back(object_id);
        ADEBUG << " lane object "
               << (*lane_objects)->at(object_id).GetSpatialLabel() << " has "
               << (*lane_objects)->at(object_id).pos.size() << " points: "
               << "lateral distance="
               << (*lane_objects)->at(object_id).lateral_distance;
1007
      }
1008 1009 1010
      if ((*lane_objects)->size() != static_cast<size_t>(count_lane_objects)) {
        AERROR << "the number of lane objects does not match.";
        return false;
1011
      }
1012

1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
      // keep only the lane objects with valid spatial labels
      std::sort(valid_lane_objects.begin(), valid_lane_objects.end());
      for (size_t i = 0; i < valid_lane_objects.size(); ++i) {
        (*lane_objects)->at(i) = (*lane_objects)->at(valid_lane_objects[i]);
        auto spatial_ = (*lane_objects)->at(i).spatial;
        if (spatial_ == SpatialLabelType::R_0)
          (*lane_objects)->at(i).newSpatial = 6;
        else if (spatial_ == SpatialLabelType::R_1)
          (*lane_objects)->at(i).newSpatial = 7;
        else if (spatial_ == SpatialLabelType::R_2)
          (*lane_objects)->at(i).newSpatial = 8;
        else if (spatial_ == SpatialLabelType::L_0)
          (*lane_objects)->at(i).newSpatial = 4;
        else if (spatial_ == SpatialLabelType::L_1)
          (*lane_objects)->at(i).newSpatial = 3;
        else if (spatial_ == SpatialLabelType::L_2)
          (*lane_objects)->at(i).newSpatial = 2;
        else
          (*lane_objects)->at(i).newSpatial = 0;
1032
      }
1033
      (*lane_objects)->resize(valid_lane_objects.size());
1034 1035
    }

1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052
    ADEBUG << "number of lane objects = " << (*lane_objects)->size();
    // if (options_.space_type != SpaceType::IMAGE) {
    //   if (!CompensateLaneObjects((*lane_objects))) {
    //     AERROR << "fail to compensate lane objects.";
    //     return false;
    //   }
    // }

    EnrichLaneInfo((*lane_objects));
    ADEBUG << "use_lane_history_: " << use_history_;
    if (use_history_) {
      //    FilterWithLaneHistory(*lane_objects);
      std::vector<bool> is_valid(generated_lanes_->size(), false);
      size_t l = 0;
      for (l = 0; l < generated_lanes_->size(); l++) {
        CorrectWithLaneHistory(l, *lane_objects, &is_valid);
      }
1053

1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
      l = 0;
      while (l < is_valid.size() && !is_valid[l]) {
        l++;
      }
      if (l < is_valid.size()) {
        lane_history_.push_back(*(*lane_objects));
      } else {
        if (!lane_history_.empty()) {
          lane_history_.pop_front();
        }
1064 1065
      }

1066 1067 1068 1069 1070 1071
      for (l = 0; l < is_valid.size(); l++) {
        if (!is_valid[l]) {
          (*lane_objects)->push_back(generated_lanes_->at(l));
          AINFO << "use history instead of current lane detection";
          AINFO << generated_lanes_->at(l).model;
        }
1072
      }
1073 1074 1075 1076 1077 1078 1079 1080
  #if USE_HISTORY_TO_EXTEND_LANE
      for (size_t i = 0; i < generated_lanes_->size(); i++) {
        if (is_valid[i]) {
          int j = 0;
          if (FindLane(*(*lane_objects), generated_lanes_->at(i).spatial, &j)) {
            ExtendLaneWithHistory(generated_lanes_->at(i),
                                  &((*lane_objects)->at(j)));
          }
1081 1082
        }
      }
1083 1084 1085 1086 1087 1088
  #endif  // USE_HISTORY_TO_EXTEND_LANE
      auto vs = options.vehicle_status;
      for (auto &m : *motion_buffer_) {
        m.motion *= vs.motion;
      }
      motion_buffer_->push_back(vs);
1089
    }
1090
  }
1091 1092 1093
  return true;
}

1094
bool CCLanePostProcessor::CorrectWithLaneHistory(int l,
1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
                                                 LaneObjectsPtr lane_objects,
                                                 std::vector<bool> *is_valid) {
  // trust current lane or not
  auto &lane = generated_lanes_->at(l);
  lane.pos.clear();
  lane.longitude_start = std::numeric_limits<ScalarType>::max();
  lane.longitude_end = 0;
  lane.order = 0;
  int lane_accum_num = 0;
  for (std::size_t i = 0; i < lane_history_.size(); i++) {
    int j = 0;
    if (!FindLane(lane_history_[i], lane.spatial, &j)) continue;

    lane_accum_num++;
    lane.order = std::max(lane.order, lane_history_[i][j].order);
G
gchen-apollo 已提交
1110

1111 1112
    Vector2D project_p;
    for (auto &pos : lane_history_[i][j].pos) {
G
gchen-apollo 已提交
1113 1114 1115 1116 1117
      int len = motion_buffer_->at(i).motion.cols();
      Eigen::VectorXf p = Eigen::VectorXf::Zero(len);
      p[0] = pos.x();
      p[1] = pos.y();
      p[len-1] = 1.0;
1118
      p = motion_buffer_->at(i).motion * p;
G
gchen-apollo 已提交
1119 1120
      project_p << p[0], p[1];
      if (project_p.x() <= 0) continue;
1121

G
gchen-apollo 已提交
1122 1123
      lane.longitude_start = std::min(project_p.x(), lane.longitude_start);
      lane.longitude_end = std::max(project_p.x(), lane.longitude_end);
1124
      lane.pos.push_back(project_p);
1125
    }
1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
  }
  // fit polynomial model and compute lateral distance for lane object
  lane.point_num = lane.pos.size();

  if (lane.point_num < 3 ||
      lane.longitude_end - lane.longitude_start <
          options_.frame.max_size_to_fit_straight_line) {
    // fit a 1st-order polynomial curve (straight line)
    lane.order = 1;
  } else {
    // fit a 2nd-order polynomial curve;
    lane.order = 2;
  }
  ADEBUG << "history size: " << lane.point_num;
  if (lane_accum_num < 2 || lane.point_num < 2 ||
      lane.longitude_end - lane.longitude_start < 4.0) {
    AWARN << "Failed to use history: " << lane_accum_num << " "
          << lane.point_num << " " << lane.longitude_end - lane.longitude_start;
    (*is_valid)[l] = true;
    return (*is_valid)[l];
  } else if (!PolyFit(lane.pos, lane.order, &(lane.model))) {
    AWARN << "failed to fit " << lane.order << " order polynomial curve.";
    (*is_valid)[l] = true;
    return (*is_valid)[l];
  }
  lane.pos_curve.x_start =
      std::min(lane.longitude_start, static_cast<ScalarType>(0));
  lane.pos_curve.x_end =
      std::max(lane.longitude_end, static_cast<ScalarType>(0));
  // for polynomial curve on vehicle space
  lane.pos_curve.a = lane.model(3);
  lane.pos_curve.b = lane.model(2);
  lane.pos_curve.c = lane.model(1);
  lane.pos_curve.d = lane.model(0);

  // Option 1: Use C0 for lateral distance
  // lane_object->lateral_distance = lane_object->model(0);
  // Option 2: Use y-value of closest point.
  lane.lateral_distance = lane.pos[0].y();
  int idx = 0;
  if (!FindLane(*lane_objects, lane.spatial, &idx)) {
1167
    //  lane_objects->push_back(lane);
1168 1169 1170
  } else {
    ScalarType ave_delta = 0;
    int count = 0;
1171

1172 1173
    for (auto &pos : lane_objects->at(idx).pos) {
      if (pos.x() > 1.2 * lane.longitude_end) continue;
1174

1175 1176 1177
      ave_delta +=
          std::abs(pos.y() - PolyEval(pos.x(), lane.order, lane.model));
      count++;
1178
    }
1179 1180 1181 1182 1183 1184 1185
    if (count > 0 && ave_delta / count > AVEAGE_LANE_WIDTH_METER / 4.0) {
      ADEBUG << "ave_delta is: " << ave_delta / count;
      lane_objects->erase(lane_objects->begin() + idx);
    } else {
      (*is_valid)[l] = true;
    }
  }
1186 1187 1188
  return (*is_valid)[l];
}

1189 1190
void CCLanePostProcessor::ExtendLaneWithHistory(const LaneObject &history,
                                                LaneObject *lane) {
1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
  if (history.longitude_end > lane->longitude_end) {
    for (auto &p : history.pos) {
      if (p.x() > lane->longitude_end) {
        lane->pos.push_back(p);
      }
    }
    AINFO << "extend lane with history by "
          << history.longitude_end - lane->longitude_end;
    lane->longitude_end = history.longitude_end;
    lane->pos_curve.x_end =
        std::max(lane->longitude_end, static_cast<ScalarType>(0));
1202 1203
  }
}
1204

1205
bool CCLanePostProcessor::FindLane(const LaneObjects &lane_objects,
1206
                                   int spatial_label, int *index) {
1207 1208
  size_t k = 0;
  while (k < lane_objects.size() &&
D
Dong Li 已提交
1209
         lane_objects.at(k).spatial != spatial_label) {
1210 1211 1212 1213 1214 1215 1216 1217 1218 1219
    k++;
  }
  if (k == lane_objects.size()) {
    return false;
  } else {
    *index = k;
    return true;
  }
}

1220 1221
void CCLanePostProcessor::InitLaneHistory() {
  use_history_ = true;
1222
  AINFO << "Init Lane History Start;";
1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
  if (!lane_history_.empty()) {
    lane_history_.clear();
  } else {
    lane_history_.set_capacity(MAX_LANE_HISTORY);
  }
  if (motion_buffer_ != nullptr) {
    motion_buffer_->clear();
  } else {
    motion_buffer_ = std::make_shared<MotionBuffer>(MAX_LANE_HISTORY);
  }
  if (generated_lanes_ != nullptr) {
    generated_lanes_->clear();
    generated_lanes_->resize(interested_labels_.size(), LaneObject());
  } else {
    generated_lanes_ =
1238
        std::make_shared<LaneObjects>(interested_labels_.size(), LaneObject());
1239
  }
1240
  for (std::size_t i = 0; i < generated_lanes_->size(); i++) {
1241 1242
    generated_lanes_->at(i).spatial = interested_labels_[i];
  }
1243
  AINFO << "Init Lane History Done;";
1244 1245 1246 1247 1248
}

void CCLanePostProcessor::FilterWithLaneHistory(LaneObjectsPtr lane_objects) {
  std::vector<int> erase_idx;
  for (size_t i = 0; i < lane_objects->size(); i++) {
G
gchen-apollo 已提交
1249 1250 1251 1252 1253 1254 1255 1256
    Eigen::VectorXf start_pos;
    if (motion_buffer_->size() > 0) {
      start_pos =
        Eigen::VectorXf::Zero(motion_buffer_->at(0).motion.cols());
      start_pos[0] = lane_objects->at(i).pos[0].x();
      start_pos[1] = lane_objects->at(i).pos[0].y();
      start_pos[motion_buffer_->at(0).motion.cols()-1] = 1.0;
    }
1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270
    for (size_t j = 0; j < lane_history_.size(); j++) {
      // iter to find corresponding lane
      size_t k;
      for (k = 0; k < lane_history_[j].size(); k++) {
        if (lane_history_[j][k].spatial == lane_objects->at(i).spatial) {
          break;
        }
      }
      // if not exist, skip
      if (k == lane_history_[j].size()) {
        continue;
      }
      // project start_pos to history, check lane stability
      auto project_pos = motion_buffer_->at(j).motion * start_pos;
D
Dong Li 已提交
1271
      auto &lane_object = lane_history_[j][k];
1272
      ScalarType delta_y =
D
Dong Li 已提交
1273 1274
          project_pos.y() -
          PolyEval(project_pos.x(), lane_object.order, lane_object.model);
1275
      // delete if too far from polyline
1276
      if (std::abs(delta_y) > AVEAGE_LANE_WIDTH_METER) {
1277 1278 1279 1280 1281
        erase_idx.push_back(i);
        break;
      }
    }
  }
1282 1283
  for (auto rit = erase_idx.rbegin(); rit != erase_idx.rend(); ++rit) {
    lane_objects->erase(lane_objects->begin() + *rit);
1284 1285 1286
  }
}

1287
bool CCLanePostProcessor::CompensateLaneObjects(LaneObjectsPtr lane_objects) {
1288
  if (lane_objects == nullptr) {
1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317
    AERROR << "lane_objects is a null pointer.";
    return false;
  }

  bool has_ego_lane_left = false;
  int ego_lane_left_idx = -1;
  bool has_ego_lane_right = false;
  int ego_lane_right_idx = -1;
  for (size_t i = 0; i < lane_objects->size(); ++i) {
    if (lane_objects->at(i).spatial == SpatialLabelType::L_0) {
      has_ego_lane_left = true;
      ego_lane_left_idx = static_cast<int>(i);
    } else if (lane_objects->at(i).spatial == SpatialLabelType::R_0) {
      has_ego_lane_right = true;
      ego_lane_right_idx = static_cast<int>(i);
    }
  }

  if ((has_ego_lane_left && has_ego_lane_right) ||
      (!has_ego_lane_left && !has_ego_lane_right)) {
    return true;
  }

  if (!has_ego_lane_left) {
    if (ego_lane_right_idx == -1) {
      AERROR << "failed to compensate left ego lane due to no right ego lane.";
      return false;
    }

1318
    LaneObject virtual_ego_lane_left = lane_objects->at(ego_lane_right_idx);
1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333

    virtual_ego_lane_left.spatial = SpatialLabelType::L_0;
    virtual_ego_lane_left.is_compensated = true;

    for (size_t i = 0; i < virtual_ego_lane_left.pos.size(); ++i) {
      virtual_ego_lane_left.pos[i](1) += options_.frame.lane_interval_distance;
    }
    virtual_ego_lane_left.lateral_distance +=
        options_.frame.lane_interval_distance;
    virtual_ego_lane_left.model(0) += options_.frame.lane_interval_distance;

    lane_objects->push_back(virtual_ego_lane_left);
  }

  if (!has_ego_lane_right) {
L
lichongchong16 已提交
1334
    ADEBUG << "add virtual lane R_0 ...";
1335 1336 1337 1338 1339
    if (ego_lane_left_idx == -1) {
      AERROR << "failed to compensate right ego lane due to no left ego lane.";
      return false;
    }

1340
    LaneObject virtual_ego_lane_right = lane_objects->at(ego_lane_left_idx);
1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358

    virtual_ego_lane_right.spatial = SpatialLabelType::R_0;
    virtual_ego_lane_right.is_compensated = true;

    for (size_t i = 0; i < virtual_ego_lane_right.pos.size(); ++i) {
      virtual_ego_lane_right.pos[i](1) -= options_.frame.lane_interval_distance;
    }
    virtual_ego_lane_right.lateral_distance -=
        options_.frame.lane_interval_distance;
    virtual_ego_lane_right.model(0) -= options_.frame.lane_interval_distance;

    lane_objects->push_back(virtual_ego_lane_right);
  }

  return true;
}

bool CCLanePostProcessor::EnrichLaneInfo(LaneObjectsPtr lane_objects) {
1359
  if (lane_objects == nullptr) {
1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406
    AERROR << "lane_objects is a null pointer.";
    return false;
  }

  for (size_t i = 0; i < lane_objects->size(); ++i) {
    LaneObject &object = (*lane_objects)[i];
    assert(object.pos.size() > 0);
    assert(object.image_pos.size() == object.pos.size());

    // for polynomial curve on vehicle space
    object.pos_curve.a = object.model(3);
    object.pos_curve.b = object.model(2);
    object.pos_curve.c = object.model(1);
    object.pos_curve.d = object.model(0);

    // let x_start be always 0 according to L3's PNC requirement
    object.pos_curve.x_start =
        std::min(object.longitude_start, static_cast<ScalarType>(0));
    object.pos_curve.x_end =
        std::max(object.longitude_end, static_cast<ScalarType>(0));

    // for polynomial curve on image space
    ScalarType img_y_start = static_cast<ScalarType>(0);
    ScalarType img_y_end = static_cast<ScalarType>(INT_MAX);
    for (size_t j = 0; j < object.image_pos.size(); ++j) {
      ScalarType y = object.image_pos[j](1);
      img_y_start = std::max(img_y_start, y);
      img_y_end = std::min(img_y_end, y);
    }

    // polynomial function: x = a*y^3 + b*y^2 + c*y + d
    Eigen::Matrix<ScalarType, MAX_POLY_ORDER + 1, 1> coeff;
    PolyFit(object.image_pos, object.order, &coeff, false);

    object.img_curve.a = coeff(3);
    object.img_curve.b = coeff(2);
    object.img_curve.c = coeff(1);
    object.img_curve.d = coeff(0);
    object.img_curve.x_start = img_y_start;
    object.img_curve.x_end = img_y_end;
  }

  return true;
}

}  // namespace perception
}  // namespace apollo