GibbsState_CN.ipynb 16.0 KB
Notebook
Newer Older
Q
Quleaf 已提交
1 2 3 4 5 6
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Q
Quleaf 已提交
7 8 9 10 11 12 13 14
    "# 吉布斯态的制备"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<em> Copyright (c) 2021 Institute for Quantum Computing, Baidu Inc. All Rights Reserved. </em>"
Q
Quleaf 已提交
15 16 17 18 19 20 21 22
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## 概览\n",
    "\n",
Q
Quleaf 已提交
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
    "在本案例中,我们将展示如何通过 Paddle Quantum 训练量子神经网络(quantum neural network, QNN)来制备量子吉布斯态。"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### 背景\n",
    "\n",
    "量子计算中的前沿方向包含量子机器学习和量子优化,在这两个方向中,特定量子态的制备是非常重要的问题。特别的,吉布斯态(Gibbs state)的制备是实现诸多量子算法所必须的步骤并且广泛应用于:\n",
    "\n",
    "- 量子机器学习中受限波尔兹曼机的学习 [1]\n",
    "- 解决凸优化和半正定规划等优化问题 [2]\n",
    "- 组合优化问题 [3]\n",
    "\n",
    "具体的吉布斯态定义如下:给定一个 $n$ 量子比特的哈密顿量 $H$(一般来说这是一个$2^n\\times2^n$的厄米矩阵),其在温度 $T$ 下的吉布斯态为 "
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "$$\n",
    "\\rho_G = \\frac{{{e^{ - \\beta H}}}}{{\\text{tr}({e^{ - \\beta H}})}},\n",
    "\\tag{1}\n",
    "$$"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "其中 ${e^{ - \\beta H}}$ 是矩阵 $ - \\beta H$ 的矩阵指数,$\\beta  = \\frac{1}{{kT}}$ 是系统的逆温度参数,$T$ 是温度参数,$k$ 是玻尔兹曼常数 (这篇教程中我们取 $k = 1$)。"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Paddle Quantum 实现"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "首先通过下面几行代码引入必要的 library 和 package。"
Q
Quleaf 已提交
70 71 72 73 74 75
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {
Q
Quleaf 已提交
76
    "ExecuteTime": {
Q
Quleaf 已提交
77 78
     "end_time": "2021-04-30T08:55:59.838299Z",
     "start_time": "2021-04-30T08:55:57.450922Z"
Q
Quleaf 已提交
79 80 81 82 83 84 85 86
    }
   },
   "outputs": [],
   "source": [
    "import scipy\n",
    "from numpy import array, concatenate, zeros\n",
    "from numpy import pi as PI\n",
    "from numpy import trace as np_trace\n",
Q
Quleaf 已提交
87 88
    "import paddle\n",
    "from paddle import matmul, trace, real\n",
Q
Quleaf 已提交
89 90
    "from paddle_quantum.circuit import UAnsatz\n",
    "from paddle_quantum.state import density_op\n",
Q
Quleaf 已提交
91
    "from paddle_quantum.utils import state_fidelity, partial_trace, pauli_str_to_matrix"
Q
Quleaf 已提交
92 93 94 95
   ]
  },
  {
   "cell_type": "markdown",
Q
Quleaf 已提交
96
   "metadata": {},
Q
Quleaf 已提交
97
   "source": [
Q
Quleaf 已提交
98
    "作为一个上手的例子,这里我们考虑一个 3 量子比特的哈密顿量及其吉布斯态:\n",
Q
Quleaf 已提交
99 100
    "\n",
    "$$\n",
Q
Quleaf 已提交
101
    "H = -Z \\otimes Z \\otimes I - I \\otimes Z \\otimes Z - Z \\otimes I \\otimes Z, \\quad I=\\left [\n",
Q
Quleaf 已提交
102 103 104 105
    "\\begin{matrix}\n",
    "1 & 0  \\\\\n",
    "0 & 1  \\\\\n",
    "\\end{matrix} \n",
Q
Quleaf 已提交
106
    "\\right ], \\quad \n",
Q
Quleaf 已提交
107 108 109 110 111
    "Z=\\left [\n",
    "\\begin{matrix}\n",
    "1 & 0  \\\\\n",
    "0 & -1  \\\\\n",
    "\\end{matrix} \n",
Q
Quleaf 已提交
112 113 114
    "\\right ].\n",
    "\\tag{2}\n",
    "$$\n",
Q
Quleaf 已提交
115
    "\n",
Q
Quleaf 已提交
116
    "这个例子中,我们将逆温度参数设置为 $\\beta = 1.5$。此外,为了方便测试结果,我们按照定义提前生成好了理想情况的吉布斯态 $\\rho_G$。"
Q
Quleaf 已提交
117 118 119 120 121 122
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {
Q
Quleaf 已提交
123
    "ExecuteTime": {
Q
Quleaf 已提交
124 125
     "end_time": "2021-04-30T08:55:59.855633Z",
     "start_time": "2021-04-30T08:55:59.841241Z"
Q
Quleaf 已提交
126 127 128 129 130 131
    }
   },
   "outputs": [],
   "source": [
    "N = 4        # 量子神经网络的宽度\n",
    "N_SYS_B = 3  # 用于生成吉布斯态的子系统B的量子比特数   \n",
Q
Quleaf 已提交
132
    "SEED = 16    # 固定随机种子\n",
Q
Quleaf 已提交
133
    "beta = 1.5   # 设置逆温度参数 beta"
Q
Quleaf 已提交
134 135 136 137 138 139
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {
Q
Quleaf 已提交
140
    "ExecuteTime": {
Q
Quleaf 已提交
141 142
     "end_time": "2021-04-30T08:55:59.935612Z",
     "start_time": "2021-04-30T08:55:59.866942Z"
Q
Quleaf 已提交
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
    }
   },
   "outputs": [],
   "source": [
    "# 生成用泡利字符串表示的特定的哈密顿量\n",
    "H = [[-1.0, 'z0,z1'], [-1.0, 'z1,z2'], [-1.0, 'z0,z2']]\n",
    "\n",
    "# 生成哈密顿量的矩阵信息\n",
    "hamiltonian = pauli_str_to_matrix(H, N_SYS_B)\n",
    "\n",
    "# 生成理想情况下的目标吉布斯态 rho\n",
    "rho_G = scipy.linalg.expm(-1 * beta * hamiltonian) / np_trace(scipy.linalg.expm(-1 * beta * hamiltonian))\n",
    "\n",
    "# 设置成 Paddle quantum 所支持的数据类型\n",
    "hamiltonian = hamiltonian.astype(\"complex128\")\n",
    "rho_G = rho_G.astype(\"complex128\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Q
Quleaf 已提交
165
    "### 搭建量子神经网络"
Q
Quleaf 已提交
166 167 168 169
   ]
  },
  {
   "cell_type": "markdown",
Q
Quleaf 已提交
170
   "metadata": {},
Q
Quleaf 已提交
171
   "source": [
Q
Quleaf 已提交
172 173 174 175 176 177 178 179 180 181
    "- 在这个案例中,我们将通过训练量子神经网络(也可以理解为参数化量子电路)来制备吉布斯态。这里,我们提供一个简单的 4 量子比特的量子电路如下:\n",
    "\n",
    "  ![Ugibbs.jpg](https://release-data.cdn.bcebos.com/PIC%2FUgibbs.jpg)\n",
    "\n",
    "- 我们需要预设一些电路的参数,比如电路有 4 个量子比特,其中第 1 个量子比特是辅助系统,第 2-4 个量子比特是用以产生吉布斯态的子系统。\n",
    "\n",
    "- 初始化其中的变量参数,$\\theta$ 代表我们量子神经网络中的参数组成的向量。\n",
    "         \n",
    "\n",
    "接下来我们根据上图中的电路设计,通过 Paddle Quantum 的 `UAnsatz` 类和内置的 `real_entangled_layer(theta, D)` 电路模板来高效搭建量子神经网络。"
Q
Quleaf 已提交
182 183 184 185 186 187
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {
Q
Quleaf 已提交
188
    "ExecuteTime": {
Q
Quleaf 已提交
189 190
     "end_time": "2021-04-30T08:56:01.029894Z",
     "start_time": "2021-04-30T08:56:01.022404Z"
Q
Quleaf 已提交
191 192 193 194 195 196
    }
   },
   "outputs": [],
   "source": [
    "def U_theta(initial_state, theta, N, D):\n",
    "    \"\"\"\n",
Q
Quleaf 已提交
197
    "    量子神经网络\n",
Q
Quleaf 已提交
198 199 200 201 202 203 204 205
    "    \"\"\"\n",
    "    \n",
    "    # 按照量子比特数量/网络宽度初始化量子神经网络\n",
    "    cir = UAnsatz(N)\n",
    "    \n",
    "    # 内置的 {R_y + CNOT} 电路模板\n",
    "    cir.real_entangled_layer(theta[:D], D)\n",
    "    \n",
Q
Quleaf 已提交
206
    "    # 铺上最后一层 R_y 旋转门\n",
Q
Quleaf 已提交
207 208 209 210 211 212
    "    for i in range(N):\n",
    "        cir.ry(theta=theta[D][i][0], which_qubit=i)\n",
    "        \n",
    "    # 量子神经网络作用在给定的初始态上\n",
    "    final_state = cir.run_density_matrix(initial_state)\n",
    "\n",
Q
Quleaf 已提交
213
    "    return final_state, cir"
Q
Quleaf 已提交
214 215 216 217
   ]
  },
  {
   "cell_type": "markdown",
Q
Quleaf 已提交
218 219 220 221 222 223 224 225
   "metadata": {},
   "source": [
    "### 配置训练模型——损失函数"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
Q
Quleaf 已提交
226 227
   "source": [
    "- 现在我们已经有了数据和量子神经网络的架构,我们将进一步定义合适的训练参数、模型和损失函数来达到我们的目标。\n",
Q
Quleaf 已提交
228 229 230 231 232 233 234 235 236 237 238
    "\n",
    "- 具体的我们参考的是论文 [4] 中的方法,核心思想是**利用吉布斯态达到了最小自由能**的性质。\n",
    "\n",
    "- 通过作用量子神经网络 $U(\\theta)$ 在初始态上,我们可以得到输出态 $\\left| {\\psi \\left( {\\bf{\\theta }} \\right)} \\right\\rangle $,其在第 2-4 个量子比特的态记为 $\\rho_B(\\theta)$。\n",
    "\n",
    "- 设置训练模型中的的损失函数。在吉布斯态学习中,我们利用冯诺依曼熵函数的截断来进行自由能的估计,相应的损失函数参考 [4] 可以设为 $loss= {L_1} + {L_2} + {L_3}$,其中 \n",
    "\n",
    "$$\n",
    "{L_1}= \\text{tr}(H\\rho_B), \\quad {L_2} = 2{\\beta^{-1}}{\\text{tr}}(\\rho_B^2), \\quad L_3 = - {\\beta ^{ - 1}}\\big(\\text{tr}(\\rho_B^3) + 3\\big)/2.\n",
    "\\tag{3}\n",
    "$$"
Q
Quleaf 已提交
239 240 241 242 243 244
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {
Q
Quleaf 已提交
245
    "ExecuteTime": {
Q
Quleaf 已提交
246 247
     "end_time": "2021-04-30T08:56:03.701245Z",
     "start_time": "2021-04-30T08:56:03.691389Z"
Q
Quleaf 已提交
248 249 250 251
    }
   },
   "outputs": [],
   "source": [
Q
Quleaf 已提交
252 253
    "class Net(paddle.nn.Layer):\n",
    "    def __init__(self, shape, dtype='float64'):\n",
Q
Quleaf 已提交
254 255 256
    "        super(Net, self).__init__()\n",
    "        \n",
    "        # 初始化 theta 参数列表,并用 [0, 2*pi] 的均匀分布来填充初始值\n",
Q
Quleaf 已提交
257 258 259
    "        self.theta = self.create_parameter(shape=shape,\n",
    "                                           default_initializer=paddle.nn.initializer.Uniform(low=0.0, high=2*PI),\n",
    "                                           dtype=dtype, is_bias=False)\n",
Q
Quleaf 已提交
260 261
    "        \n",
    "        # 初始化 rho = |0..0><0..0| 的密度矩阵\n",
Q
Quleaf 已提交
262
    "        self.initial_state = paddle.to_tensor(density_op(N))\n",
Q
Quleaf 已提交
263 264 265 266 267
    "\n",
    "    # 定义损失函数和前向传播机制\n",
    "    def forward(self, H, N, N_SYS_B, D):\n",
    "\n",
    "        # 施加量子神经网络\n",
Q
Quleaf 已提交
268
    "        rho_AB, cir = U_theta(self.initial_state, self.theta, N, D)\n",
Q
Quleaf 已提交
269 270 271 272 273 274
    "\n",
    "        # 计算偏迹 partial trace 来获得子系统B所处的量子态 rho_B\n",
    "        rho_B = partial_trace(rho_AB, 2 ** (N - N_SYS_B), 2 ** (N_SYS_B), 1)\n",
    "        \n",
    "        # 计算三个子损失函数\n",
    "        rho_B_squre = matmul(rho_B, rho_B)\n",
Q
Quleaf 已提交
275 276 277
    "        loss1 = real(trace(matmul(rho_B, H)))\n",
    "        loss2 = real(trace(rho_B_squre)) * 2 / beta\n",
    "        loss3 = -(real(trace(matmul(rho_B_squre, rho_B))) + 3) / (2 * beta)\n",
Q
Quleaf 已提交
278 279 280 281
    "        \n",
    "        # 最终的损失函数\n",
    "        loss = loss1 + loss2 + loss3  \n",
    "\n",
Q
Quleaf 已提交
282
    "        return loss, rho_B, cir"
Q
Quleaf 已提交
283 284 285 286 287 288
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Q
Quleaf 已提交
289 290 291 292 293 294 295 296
    "### 配置训练模型——模型参数"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "在进行量子神经网络的训练之前,我们还需要进行一些训练的超参数设置,主要是学习速率(learning rate, LR)、迭代次数(iteration, ITR)和量子神经网络计算模块的深度(depth, D)。这里我们设定学习速率为 0.5,迭代次数为 50 次。读者不妨自行调整来直观感受下超参数调整对训练效果的影响。"
Q
Quleaf 已提交
297 298 299 300 301 302
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {
Q
Quleaf 已提交
303
    "ExecuteTime": {
Q
Quleaf 已提交
304 305
     "end_time": "2021-04-30T08:56:05.260360Z",
     "start_time": "2021-04-30T08:56:05.251628Z"
Q
Quleaf 已提交
306 307 308 309 310 311 312 313 314 315 316 317 318
    }
   },
   "outputs": [],
   "source": [
    "ITR = 50 # 设置训练的总迭代次数\n",
    "LR = 0.5 # 设置学习速率\n",
    "D = 1    # 设置量子神经网络中重复计算模块的深度 Depth"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Q
Quleaf 已提交
319 320 321 322 323 324 325
    "### 进行训练"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Q
Quleaf 已提交
326
    "- 当训练模型的各项参数都设置完成后,我们将数据转化为 Paddle 中的张量,进而进行量子神经网络的训练。\n",
Q
Quleaf 已提交
327
    "- 训练过程中我们用的是 [Adam Optimizer](https://www.paddlepaddle.org.cn/documentation/docs/zh/api/paddle/optimizer/adam/Adam_cn.html),也可以调用 Paddle 中提供的其他优化器。\n",
Q
Quleaf 已提交
328
    "- 我们将训练过程中的结果依次输出。\n",
Q
Quleaf 已提交
329
    "- 特别地,我们依次输出了我们学习到的量子态 $\\rho_B(\\theta)$ 与吉布斯态 $\\rho_G$ 的保真度,保真度越高说明QNN输出的态越接近于吉布斯态。"
Q
Quleaf 已提交
330 331 332 333 334 335
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {
Q
Quleaf 已提交
336
    "ExecuteTime": {
Q
Quleaf 已提交
337 338
     "end_time": "2021-04-30T08:56:19.753228Z",
     "start_time": "2021-04-30T08:56:15.379159Z"
Q
Quleaf 已提交
339 340 341 342 343 344 345
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
Q
Quleaf 已提交
346 347 348 349
      "iter: 10 loss: -3.1085 fid: 0.9241\n",
      "iter: 20 loss: -3.3375 fid: 0.9799\n",
      "iter: 30 loss: -3.3692 fid: 0.9897\n",
      "iter: 40 loss: -3.3990 fid: 0.9929\n",
Q
Quleaf 已提交
350 351 352 353 354 355 356 357 358 359 360
      "iter: 50 loss: -3.4133 fid: 0.9959\n",
      "\n",
      "训练后的电路:\n",
      "--Ry(6.262)----*--------------X----Ry(0.747)--\n",
      "               |              |               \n",
      "--Ry(4.710)----X----*---------|----Ry(6.253)--\n",
      "                    |         |               \n",
      "--Ry(-0.01)---------X----*----|----Ry(-0.03)--\n",
      "                         |    |               \n",
      "--Ry(-0.00)--------------X----*----Ry(6.312)--\n",
      "                                              \n"
Q
Quleaf 已提交
361 362 363 364
     ]
    }
   ],
   "source": [
Q
Quleaf 已提交
365
    "paddle.seed(SEED)\n",
Q
Quleaf 已提交
366
    "    \n",
Q
Quleaf 已提交
367 368
    "# 我们需要将 Numpy array 转换成 Paddle 中支持的 Tensor\n",
    "H = paddle.to_tensor(hamiltonian)\n",
Q
Quleaf 已提交
369
    "\n",
Q
Quleaf 已提交
370 371
    "# 确定网络的参数维度\n",
    "net = Net(shape=[D + 1, N, 1])\n",
Q
Quleaf 已提交
372
    "\n",
Q
Quleaf 已提交
373 374 375
    "# 一般来说,我们利用 Adam 优化器来获得相对好的收敛,\n",
    "# 当然你可以改成 SGD 或者是 RMS prop.\n",
    "opt = paddle.optimizer.Adam(learning_rate=LR, parameters=net.parameters())\n",
Q
Quleaf 已提交
376
    "\n",
Q
Quleaf 已提交
377 378
    "# 优化循环\n",
    "for itr in range(1, ITR + 1):\n",
Q
Quleaf 已提交
379
    "        \n",
Q
Quleaf 已提交
380
    "    # 前向传播计算损失函数并返回生成的量子态 rho_B\n",
Q
Quleaf 已提交
381
    "    loss, rho_B, cir = net(H, N, N_SYS_B, D)\n",
Q
Quleaf 已提交
382
    "        \n",
Q
Quleaf 已提交
383 384 385 386
    "    # 反向传播极小化损失函数\n",
    "    loss.backward()\n",
    "    opt.minimize(loss)\n",
    "    opt.clear_grad()\n",
Q
Quleaf 已提交
387
    "\n",
Q
Quleaf 已提交
388 389 390
    "    # 转换成 Numpy array 用以计算量子态的保真度 F(rho_B, rho_G)\n",
    "    rho_B = rho_B.numpy()\n",
    "    fid = state_fidelity(rho_B, rho_G)\n",
Q
Quleaf 已提交
391
    "        \n",
Q
Quleaf 已提交
392 393
    "    # 打印训练结果\n",
    "    if itr % 10 == 0:\n",
Q
Quleaf 已提交
394 395 396 397
    "        print('iter:', itr, 'loss:', '%.4f' % loss.numpy(), 'fid:', '%.4f' % fid)\n",
    "    if itr == ITR:\n",
    "        print(\"\\n训练后的电路:\")\n",
    "        print(cir)"
Q
Quleaf 已提交
398 399 400 401 402 403
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Q
Quleaf 已提交
404
    "## 总结"
Q
Quleaf 已提交
405 406 407 408 409 410
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Q
Quleaf 已提交
411 412 413 414 415 416 417
    "根据上面训练得到的结果,通过大概 50 次迭代,我们就能达到高于 99.5% 保真度的高精度吉布斯态,高效并精确地完成了吉布斯态的制备。我们可以通过 print 函数来输出学习到的量子神经网络的参数和它的输出态。"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Q
Quleaf 已提交
418 419
    "_______\n",
    "\n",
Q
Quleaf 已提交
420 421 422 423 424 425 426 427
    "## 参考文献"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "[1] Kieferová, M. & Wiebe, N. Tomography and generative training with quantum Boltzmann machines. [Phys. Rev. A 96, 062327 (2017).](https://journals.aps.org/pra/abstract/10.1103/PhysRevA.96.062327)\n",
Q
Quleaf 已提交
428
    "\n",
Q
Quleaf 已提交
429
    "[2] Brandao, F. G. S. L. & Svore, K. M. Quantum Speed-Ups for Solving Semidefinite Programs. [in 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS) 415–426 (IEEE, 2017). ](https://ieeexplore.ieee.org/abstract/document/8104077)\n",
Q
Quleaf 已提交
430
    "\n",
Q
Quleaf 已提交
431
    "[3] Somma, R. D., Boixo, S., Barnum, H. & Knill, E. Quantum Simulations of Classical Annealing Processes. [Phys. Rev. Lett. 101, 130504 (2008).](https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.101.130504)\n",
Q
Quleaf 已提交
432
    "\n",
Q
Quleaf 已提交
433
    "[4] Wang, Y., Li, G. & Wang, X. Variational quantum Gibbs state preparation with a truncated Taylor series. [Phys. Rev. A 16, 054035 (2021).](https://journals.aps.org/prapplied/abstract/10.1103/PhysRevApplied.16.054035)"
Q
Quleaf 已提交
434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
Q
Quleaf 已提交
453
   "version": "3.7.10"
Q
Quleaf 已提交
454 455 456 457 458 459 460 461 462 463 464 465 466
  },
  "toc": {
   "base_numbering": 1,
   "nav_menu": {},
   "number_sections": true,
   "sideBar": true,
   "skip_h1_title": false,
   "title_cell": "Table of Contents",
   "title_sidebar": "Contents",
   "toc_cell": false,
   "toc_position": {},
   "toc_section_display": true,
   "toc_window_display": false
Q
Quleaf 已提交
467 468 469
  }
 },
 "nbformat": 4,
Q
Quleaf 已提交
470
 "nbformat_minor": 4
Q
Quleaf 已提交
471
}